リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Charge–Discharge Behavior of Graphite Negative Electrodes in FSA-Based Ionic Liquid Electrolytes: Comparative Study of Li-, Na-, K-Ion Systems」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Charge–Discharge Behavior of Graphite Negative Electrodes in FSA-Based Ionic Liquid Electrolytes: Comparative Study of Li-, Na-, K-Ion Systems

Yamamoto, Takayuki Yadav, Alisha Nohira, Toshiyuki 京都大学 DOI:10.1149/1945-7111/ac6a1a

2022.05

概要

K-ion batteries utilizing ionic liquid (IL) electrolytes are promising candidates for next-generation batteries because of the abundance of potassium resources, low redox potential of potassium, and high safety of ILs. Our major interest is in the comprehensive understanding of electrochemical alkali metal intercalation/deintercalation into graphite negative electrodes, because graphite can easily form graphite intercalation compounds (GICs) with various ionic species, but not with sodium. In this study, we investigated the potassium storage mechanism of graphite negative electrodes in bis(fluorosulfonyl)amide (FSA)-based ILs, and compared the electrochemical GIC formation of Li-, Na-, and K-ion systems. Charge–discharge tests of graphite in K[FSA]–[C₃C₁pyrr][FSA] IL (C₃C₁pyrr = N-methyl-N-propylpyrrolidinium) at 313 K yielded an initial discharge capacity as high as 268 mAh (g-C)⁻¹, leading to the formation of several K-GICs including stage-3 KC₃₆, stage-2 KC₂₄, and stage-1 KC₈. The rate capability and long-term cycling tests indicated stable potassiation/depotassiation behavior for 225 cycles. A comparison of the electrochemical behavior of graphite among M[FSA]–[C₃C₁pyrr][FSA] (M = Li, Na, and K) ILs at 298 K indicated that the formation of binary M-GICs is localized in the potential range below −2.85 V vs. Fc⁺/Fc (Fc = ferrocene), which possibly hinders Na-GIC formation.

この論文で使われている画像

参考文献

31.

1. T. Adefarati and R. C. Bansal, Appl. Energy, 206, 911 (2017).

2. The Intergovernmental Panel on Climate Change (IPCC), Renewable Energy

Sources and Climate Change Mitigation (Cambridge University Press)

(Cambridge, England) (2011).

3. D. Larcher and J. M. Tarascon, Nat. Chem., 7, 19 (2015).

4. Z. P. Cano, D. Banham, S. Ye, A. Hintennach, J. Lu, M. Fowler, and Z. Chen, Nat.

Energy, 3, 279 (2018).

5. J. B. Goodenough and K. S. Park, J. Am. Chem. Soc., 135, 1167 (2013).

6. G. E. Blomgren, J. Electrochem. Soc., 164, A5019 (2017).

7. P. W. Gruber, P. A. Medina, G. A. Keoleian, S. E. Kesler, M. P. Everson, and T.

J. Wallington, J. Ind. Ecol., 15, 760 (2011).

8. U.S. Geological Survey, (2022), Mineral commodity summaries10.3133/mcs2022.

9. M. D. Slater, D. Kim, E. Lee, M. Doeff, and C. S. Johnson, Adv. Funct. Mater., 23,

947 (2013).

10. N. Yabuuchi, K. Kubota, M. Dahbi, and S. Komaba, Chem. Rev., 114, 11636

(2014).

11. K. Matsumoto, J. Hwang, S. Kaushik, C. Y. Chen, and R. Hagiwara, Energy

Environ. Sci., 12, 3247 (2019).

12. A. Eftekhari, Z. Jian, and X. Ji, ACS Appl. Mater. Interfaces, 9, 4404 (2017).

13. J. Hwang, S. Myung, and Y. K. Sun, Adv. Funct. Mater., 28, 1802938 (2018).

14. T. Hosaka, K. Kubota, A. S. Hameed, and S. Komaba, Chem. Rev., 120, 6358

(2020).

15. R. L. Rudnick and S. Gao, Composition of the Continental Crust, Treatise on

Geochemistry (Elsevier, Amsterdam, Netherlands) 2nd ed., 4, 1 (2014).

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

S. G. Bratsch, J. Phys. Chem. Ref. Data, 18, 1 (1989).

M. S. Dresselhaus and G. Dresselhaus, Adv. Phys., 51, 1 (2002).

T. Ohzuku, Y. Iwakoshi, and K. Sawai, J. Electrochem. Soc., 140, 2490 (1993).

Y. Li, Y. Lu, P. Adelhelm, M. M. Titirici, and Y. S. Hu, Chem. Soc. Rev., 48, 4655

(2019).

P. Ge and M. Fouletier, Solid State Ionics, 28–30, 1172 (1988).

M. M. Doeff, Y. Ma, S. J. Visco, and L. C. De Jonghe, J. Electrochem. Soc., 140,

L169 (1993).

Y. Kondo, T. Fukutsuka, K. Miyazaki, Y. Miyahara, and T. Abe, J. Electrochem.

Soc., 166, A5323 (2019).

G. Yoon, H. Kim, I. Park, and K. Kang, Adv. Energy Mater., 7, 1601519 (2017).

S. Komaba, T. Hasegawa, M. Dahbi, and K. Kubota, Electrochem. Commun., 60,

172 (2015).

W. Luo et al., Nano Lett., 15, 7671 (2015).

J. Liu et al., Adv. Energy Mater., 9, 1900579 (2019).

L. Fan, R. Ma, Q. Zhang, X. Jia, and B. Lu, Angew. Chem. Int. Ed., 58, 10500

(2019).

Q. Wang, B. Mao, S. I. Stoliarov, and J. Sun, Prog. Energy Combust. Sci., 73, 95

(2019).

C. Ding, T. Nohira, K. Kuroda, R. Hagiwara, A. Fukunaga, S. Sakai, K. Nitta, and

S. Inazawa, J. Power Sources, 238, 296 (2013).

A. Fukunaga, T. Nohira, R. Hagiwara, K. Numata, E. Itani, S. Sakai, K. Nitta, and

S. Inazawa, J. Power Sources, 246, 387 (2014).

K. Matsumoto, Y. Okamoto, T. Nohira, and R. Hagiwara, J. Phys. Chem. C, 119,

7648 (2015).

T. Yamamoto, T. Yamaguchi, T. Nohira, R. Hagiwara, A. Fukunaga, S. Sakai, and

K. Nitta, Electrochemistry, 85, 391 (2017).

T. Yamamoto, K. Mitsuhashi, K. Matsumoto, R. Hagiwara, A. Fukunaga, S. Sakai,

K. Nitta, and T. Nohira, Electrochemistry, 87, 175 (2019).

T. Yamamoto, K. Matsumoto, R. Hagiwara, and T. Nohira, J. Phys. Chem. C, 121,

18450 (2017).

T. Yamamoto and T. Nohira, Chem. Commun., 56, 2538 (2020).

H. Onuma et al., ACS Energy Lett., 5, 2849 (2020).

T. Yamamoto, S. Nishijima, and T. Nohira, J. Phys. Chem. B, 124, 8380 (2020).

T. Yamamoto, R. Matsubara, and T. Nohira, J. Chem. Eng. Data, 66, 1081 (2021).

M. Watanabe, M. L. Thomas, S. Zhang, K. Ueno, T. Yasuda, and K. Dokko, Chem.

Rev., 117, 7190 (2017).

H. Yamamoto, K. Matsumoto, and R. Hagiwara, J. Fluor. Chem., 242, 109714

(2021).

H. Onuma, K. Kubota, S. Muratsubaki, W. Ota, M. Shishkin, H. Sato,

K. Yamashita, S. Yasuno, and S. Komaba, J. Mater. Chem. A, 9, 11187 (2021).

R. C. Asher and S. A. Wilson, Nature, 181, 409 (1958).

A. Metrot, D. Guerard, D. Billaud, and A. Herold, Synth. Met., 1, 363 (1980).

K. Nobuhara, H. Nakayama, M. Nose, S. Nakanishi, and H. Iba, J. Power Sources,

243, 585 (2013).

H. Moriwake, A. Kuwabara, C. A. J. Fisher, and Y. Ikuhara, RSC Adv., 7, 36550

(2017).

O. Lenchuk, P. Adelhelm, and D. Mollenhauer, Phys. Chem. Chem. Phys., 21,

19378 (2019).

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る