リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Charge–Discharge Performance of Copper Metal Positive Electrodes in Fluorohydrogenate Ionic Liquids for Fluoride-Shuttle Batteries」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Charge–Discharge Performance of Copper Metal Positive Electrodes in Fluorohydrogenate Ionic Liquids for Fluoride-Shuttle Batteries

Yamamoto, Takayuki Matsumoto, Kazuhiko Hagiwara, Rika Nohira, Toshiyuki 京都大学 DOI:10.1149/1945-7111/abf698

2021.04

概要

In search of room-temperature electrolytes for fluoride-shuttle batteries, fluorohydrogenate ionic liquids (FHILs) have emerged, showing high ionic conductivities and better operational practicality. To enhance the performance of these electrolytes, the charge–discharge behavior of copper metal as positive electrodes in FHILs was investigated in this study. In the [C₂C₁im][(FH)₂.₃F] (C₂C₁im = 1-ethyl-3-methylimidazolium) FHIL electrolyte, although the 1st discharge capacity of 599 mAh (g-Cu)⁻¹ included the reductive reaction of surface oxide films, the 2nd discharge capacity of 444 mAh (g-Cu)⁻¹ that corresponds to 53% of the theoretical capacity was achieved. However, the capacity declines to 167 mAh (g-Cu)⁻¹ at the 20th cycle, indicating low capacity retention. In contrast, the adoption of [C₂C₁pyrr][(FH)₂.₃F] (C₂C₁pyrr = N-ethyl-N-methylpyrrolidinium) electrolyte confers improved cycleability across the cycles with a higher discharge capacity of 210 mAh (g-Cu)⁻¹ at the 20th cycle. Scanning electron microscopy and energy-dispersive X-ray spectroscopy performed on the electrode surfaces confirm reduced electrode degradation characterized by suppressed aggregation of copper particles in [C₂C₁pyrr][(FH)₂.₃F] due to its low CuF₂ solubility compared with [C₂C₁im][(FH)₂.₃F]. Herein, we demonstrate the use of FHILs with low CuF₂ solubilities as a strategy for improving the charge–discharge performance of copper metal positive electrodes in fluoride-shuttle batteries.

この論文で使われている画像

参考文献

1.

F. Gschwind, G. Rodriguez-Garcia, D. J. S. Sandbeck, A. Gross, M. Weil, M. Fichtner, N.

Hӧrmann, J. Fluorine Chem., 182, 76 (2016).

2.

G. Karkera, M. A. Reddy, M. Fichtner, J. Power Sources, 481, 228877 (2021).

3.

I. Mohammad, R. Witter, M. Fichtner, M. A. Reddy, ACS Appl. Energy Mater., 1, 4766

(2018).

4.

L. Liu, L. Yang, M. Liu, X.Li, D. Shao, K. Luo, X. Wang, Z. Luo, J. Alloys Comp., 819,

152983 (2020).

5.

Y. Matsuo, J. Inamoto, A. Mineshige, M. Murakami, K. Matsumoto, R. Hagiwara,

Electrochem. Commun., 110, 106626 (2020).

6.

J. Schoonman, A. Wolfert, Solid State Ionics, 3–4, 373 (1981).

7.

M. A. Reddy and M. Fichtner, J. Mater. Chem., 21, 17059 (2011).

8.

N. M. Ali, W. Kerstin, R. Jochen, M. A. Reddy, C. Oliver, Chem. Mater., 29, 3441 (2017).

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

9.

D. T. Thieu, M. H. Fawey, H. Bhatia, T. Diemant, V. S. K. Chakravadhanula, R. J. Behm,

C. Kübel, M. Fichtner, Adv. Funct. Mater., 27, 1701051 (2017).

10. A. Grenier, A. G. Porras-Gutierrez, M. Body, C. Legein, F. Chrétien, E. Raymundo-Piñero,

M. Dollé, H. Groult, D. Dambournet, J. Phys. Chem. C, 121, 24962 (2017).

11. I. Mohammad, R. Witter, M. Fichtner, M. A. Reddy, ACS Appl. Energy Mater., 2, 1553

(2019).

12. K. Okazaki, Y. Uchimoto, T. Abe, Z. Ogumi, ACS Energy Lett., 2, 1460 (2017).

13. H. Konishi, T. Minato, T. Abe, Z. Ogumi, J. Electrochem. Soc., 164, A3702 (2017).

14. V. K. Davis, C. M. Bates, K. Omichi, B. M. Savoie, N. Momčilović, Q. Xu, W. J. Wolf, M.

A. Webb, K. J. Billings, N. H. Chou, S. Alayoglu, R. K. McKenney, I. M. Darolles, N. G.

Nair, A. Hightower, D. Rosenberg, M. Ahmed, C. J. Brooks, T. F. Miller III, R. H. Grubbs,

S. C. Jones, Science, 362, 1144 (2018).

15. H. Konishi, T. Minato, T. Abe, Z. Ogumi, J. Appl. Electrochem., 48, 1205 (2018).

16. T. Yamanaka, K. Okazaki, T. Abe, K. Nishio, Z. Ogumi, ChemSusChem, 12, 527 (2019).

17. H. Konishi, T. Minato, T. Abe, Z. Ogumi, J. Phys. Chem. C, 123, 10246 (2019).

18. R. Hagiwara, T. Hirashige, T. Tsuda, Y. Ito, J. Fluorine Chem., 99, 1 (1999).

19. T. Enomoto, Y. Nakamori, K. Matsumoto, R. Hagiwara, J. Phys. Chem. C, 115, 4324

(2011).

20. R. Hagiwara, T. Hirashige, T. Tsuda, Y. Ito, J. Electrochem. Soc., 149, D1 (2002).

21. K. Matsumoto, R. Hagiwara, Y. Ito, Electrochem. Solid-State Lett., 7, E41 (2004).

22. R. Hagiwara, T. Nohira, K. Matsumoto, Y. Tamba, Electrochem. Solid-State Lett., 8, A231

(2005).

23. J. S. Lee, T. Nohira, R. Hagiwara, J. Power Sources, 171, 535 (2007).

24. P. Kiatkittikul, J. Yamaguchi, R. Taniki, K. Matsumoto, T. Nohira, R. Hagiwara, J. Power

Sources, 266, 193 (2014).

25. M. Ue, M. Takeda, A. Toriumi, A. Kominato, R. Hagiwara, Y. Ito, J. Electrochem. Soc.,

150, A499 (2003).

26. A. Senda, K. Matsumoto, T. Nohira, R. Hagiwara, J. Power Sources, 195, 4414 (2010).

27. R. Taniki, K. Matsumoto, T. Nohira, R. Hagiwara, J. Electrochem. Soc., 160, A734 (2013).

28. T. Yamamoto, K. Matsumoto, R. Hagiwara, T. Nohira, ACS Appl. Energy Mater., 2, 6153

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

(2019).

29. G. van der Laan, C. Westra, C. Haas, G. A. Sawatzky, Phys. Rev. B, 23, 4369 (1981).

30. M. J. Riley, L. Dubicki, G. Moran, E. R. Krausz, I. Yamada, Inorg. Chem., 29, 1614 (1990).

31. J.-M. Dance, J. Grannec, A. Tressaud, C. R. Acad. Sci., 283, 115 (1976).

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Figures

(a)

Current density / A (g-Cu) -1

(b)

-2

1st

2nd

3rd

-4

-6

-0.5

0.5

1.0

Potential / V vs. CuF22/Cu

CuF2/Cu

vs. CuF

V vs.

Potential // V

/Cu

Potential

1.0

0.5

-0.5

200

400

600

Capacity / mAh (g-Cu) -1

Fig. 1 (a) Cyclic voltammograms and (b) initial charge–discharge curves of the copper metal

electrode in the [C2C1im][(FH)2.3F] electrolyte at 298 K. Scan rate in (a): 10 mV s−1. Charge–

discharge rate in (b): 0.05C.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

▼ Cu (01-085-1326)

Pt

/ cps

Intensity

Intensity

(a)

2×104 cps

Pt

Pt

2×104 cps

(b)

Pt

Pt

2×104 cps

Pt

(c)

20

25

30

35 40 45 50

2 / deg. (Cu-K)

55

60

Fig. 2 X-ray diffraction patterns of the copper metal electrodes (a) before charging (pristine

state), (b) after charging to 0.7 V vs. CuF2/Cu, and (c) after 1 cycle to −0.3 V vs. CuF2/Cu in

the [C2C1im][(FH)2.3F] electrolyte at 298 K. The diffraction peaks of Pt metal arise from the Pt

current collector.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Cu 2p3/2

Cu 2p1/2

CuF2

satellite

CuF2

Cu0

CuF2

satellite

CuO

CuF2

Cu0

CuO

/ a.u.

Intensity

Intensity

(a)

(b)

(c)

970

960

950

940

930

Binding energy / eV

Fig. 3 Cu 2p XPS profiles of the copper metal electrodes (a) before charging (pristine state),

(b) after charging to 0.7 V vs. CuF2/Cu, and (c) after 1 cycle to −0.3 V vs. CuF2/Cu. in the

[C2C1im][(FH)2.3F] electrolyte at 298 K.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

(a)

CuF2/Cu

vs. CuF2/Cu

V vs.

Potential // V

Potential

1.0

20th 10th

1st 2nd

0.5

-0.5

200

400

600

Capacity / mAh (g-Cu)-1

(g-Cu)−1

−1

Capacity

mAh

(g-Cu)

Specific capacity / mAh (g-Cu)-1

(b)

600

Charge

Discharge

400

200

10

15

Cycle number

20

Fig. 4 (a) Charge–discharge curves and (b) cycling characteristics of the copper metal electrode

in the [C2C1im][(FH)2.3F] electrolyte at 298 K. Charge–discharge rate: 0.05C.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

(a)

CuF2/Cu

Potential / V vs. CuF2/Cu

1.0

20th 10th 1st 2nd

0.5

(b)

capacity // mAh

Discharge capacity

mAh (g-Cu)-1

(g-Cu)−1

Discharge

Discharge capacity / mAh (g-Cu)-1

-0.5

100 200 300 400 500

[C2C1im][(FH)2.3F]

Capacity

/ mAh (g-Cu)-1

(g-Cu)−1

[C2C1pyrr][(FH)2.3F]

600

[C

[C2C1im][(FH)2.3F]

2C1im][(FH)2.3F]

[C

[C2C1pyrr][(FH)2.3F]

2C1pyrr][(FH)2.3F]

400

600

200

400

200

10

15

Cycle number

20

Fig. 5 (a) Charge–discharge curves of the copper metal electrode in [C2C1pyrr][(FH)2.3F]

electrolyte at 298 K. (b) A comparison of discharge capacities of the copper metal electrode

in the [C2C1im][(FH)2.3F] and [C2C1pyrr][(FH)2.3F] electrolytes at 298 K. Charge–discharge

rate: 0.05C.

10

15

Cycle number

20

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Cu

(a) Pristine

10 μm

Cu

(b) After 20 cycles

([C2C1im][(FH)2.3F])

10 μm

Cu

(c) After 20 cycles

([C2C1pyrr][(FH)2.3F])

10 μm

Fig. 6 SEM images and corresponding EDX mapping of the copper metal electrodes surfaces

(a) before charging (pristine state), (b) after 20 cycles in the [C2C1im][(FH)2.3F], and (c) after

20 cycles in the [C2C1pyrr][(FH)2.3F] at 298 K.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Figure captions

Fig. 1 (a) Cyclic voltammograms and (b) initial charge–discharge curves of the copper metal

electrode in the [C2C1im][(FH)2.3F] electrolyte at 298 K. Scan rate in (a): 10 mV s−1. Charge–

discharge rate in (b): 0.05C.

Fig. 2 X-ray diffraction patterns of the copper metal electrodes (a) before charging (pristine

state), (b) after charging to 0.7 V vs. CuF2/Cu, and (c) after 1 cycle to −0.3 V vs. CuF2/Cu in

the [C2C1im][(FH)2.3F] electrolyte at 298 K. The diffraction peaks of Pt metal arise from the Pt

current collector.

Fig. 3 Cu 2p XPS profiles of the copper metal electrodes (a) before charging (pristine state),

(b) after charging to 0.7 V vs. CuF2/Cu, and (c) after 1 cycle to −0.3 V vs. CuF2/Cu. in the

[C2C1im][(FH)2.3F] electrolyte at 298 K.

Fig. 4 (a) Charge–discharge curves and (b) cycling characteristics of the copper metal electrode

in the [C2C1im][(FH)2.3F] electrolyte at 298 K. Charge–discharge rate: 0.05C.

Fig. 5 (a) Charge–discharge curves of the copper metal electrode in [C2C1pyrr][(FH)2.3F]

electrolyte at 298 K. (b) A comparison of discharge capacities of the copper metal electrode

in the [C2C1im][(FH)2.3F] and [C2C1pyrr][(FH)2.3F] electrolytes at 298 K. Charge–discharge

rate: 0.05C.

Fig. 6 SEM images and corresponding EDX mapping of the copper metal electrodes surfaces

(a) before charging (pristine state), (b) after 20 cycles in the [C2C1im][(FH)2.3F], and (c) after

20 cycles in the [C2C1pyrr][(FH)2.3F] at 298 K.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る