リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Stable Cycle Performance of a Phosphorus Negative Electrode in Lithium-Ion Batteries Derived from Ionic Liquid Electrolytes」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Stable Cycle Performance of a Phosphorus Negative Electrode in Lithium-Ion Batteries Derived from Ionic Liquid Electrolytes

Kaushik, Shubham Matsumoto, Kazuhiko Hagiwara, Rika 京都大学 DOI:10.1021/acsami.0c21412

2021.03

概要

Although high-capacity negative electrode materials are seen as a propitious strategy for improving the performance of lithium-ion batteries (LIBs), their advancement is curbed by issues such as pulverization during the charge/discharge process and the formation of an unstable solid electrolyte interphase (SEI). In particular, electrolytes play a vital role in determining the properties of an SEI layer. Thus, in this study, we investigate the performance of a red phosphorus/acetylene black composite (P/AB) prepared by high-energy ball milling as a negative electrode material for LIBs using organic and ionic liquid (IL) electrolytes. Galvanostatic tests performed on half cells demonstrate high discharge capacities in the 1386–1700 mAh (g-P/AB)⁻¹ range along with high Coulombic efficiencies of 85.3–88.2% in the first cycle, irrespective of the electrolyte used. Upon cycling, the Li[FSA]-[C₂C₁im][FSA] (FSA⁻ = bis(fluorosulfonyl)amide and C₂C₁im⁺ = 1-ethyl-3-methylimidazolium) IL electrolyte (2:8 in mol) demonstrates a high capacity retention of 78.8% after 350 cycles, whereas significant capacity fading is observed in the Li[PF₆] and Li[FSA] organic electrolytes. Electrochemical impedance spectroscopy conducted with cycling revealed lower interfacial resistance in the IL electrolyte than in the organic electrolytes. Scanning electron microscopy and X-ray photoelectron spectroscopy after cycling in different electrolytes evinced that the IL electrolyte facilitates the formation of a robust SEI layer comprising multiple layers of sulfur species resulting from FSA⁻ decomposition. A P/AB|LiFePO₄ full cell using the IL electrolyte showed superior capacity retention than organic electrolytes and a high energy density under ambient conditions. This work not only illuminates the improved performance of a phosphorous-based negative electrode alongside ionic liquid electrolytes but also displays a viable strategy for the development of high-performance LIBs, especially for large-scale applications.

この論文で使われている画像

参考文献

1.

Lu, L.; Han, X.; Li, J.; Hua, J.; Ouyang, M., A Review on the Key Issues for Lithium-Ion

Battery Management in Electric Vehicles. J. Power Sources 2013, 226, 272-288.

2.

Nitta, N.; Wu, F.; Lee, J. T.; Yushin, G., Li-Ion Battery Materials: Present and Future.

Mater. Today 2015, 18, 252-264.

3.

Endo, M.; Kim, C.; Nishimura, K.; Fujino, T.; Miyashita, K., Recent Development of

Carbon Materials for Li Ion Batteries. Carbon 2000, 38, 183-197.

4.

Aurbach, D.; Markovsky, B.; Shechter, A.; Ein‐Eli, Y.; Cohen, H., A Comparative Study

of Synthetic Graphite and Li Electrodes in Electrolyte Solutions Based on Ethylene Carbonate‐

Dimethyl Carbonate Mixtures. J. Electrochem. Soc. 1996, 143, 3809-3820.

5.

Roberts, A. D.; Li, X.; Zhang, H., Porous Carbon Spheres and Monoliths: Morphology

Control, Pore Size Tuning and Their Applications as Li-Ion Battery Anode Materials. Chem. Soc.

Rev. 2014, 43, 4341-4356.

6.

Bulusheva, L. G.; Okotrub, A. V.; Kurenya, A. G.; Zhang, H.; Zhang, H.; Chen, X.; Song,

H., Electrochemical Properties of Nitrogen-Doped Carbon Nanotube Anode in Li-Ion Batteries.

Carbon 2011, 49, 4013-4023.

7.

Buiel, E.; Dahn, J. R., Li-Insertion in Hard Carbon Anode Materials for Li-Ion Batteries.

Electrochim. Acta 1999, 45, 121-130.

8.

Larcher, D.; Beattie, S.; Morcrette, M.; Edström, K.; Jumas, J.-C.; Tarascon, J.-M., Recent

Findings and Prospects in the Field of Pure Metals as Negative Electrodes for Li-Ion Batteries. J.

Mater. Chem. 2007, 17, 3759-3772.

30

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

9.

Baggetto, L. c.; Notten, P. H. L., Lithium-Ion (De)Insertion Reaction of Germanium Thin-

Film Electrodes: An Electrochemical and in Situ Xrd Study. J. Electrochem. Soc. 2009, 156, A169.

10.

Nitta, N.; Yushin, G., High-Capacity Anode Materials for Lithium-Ion Batteries: Choice

of Elements and Structures for Active Particles. Part. Part. Syst. Charact. 2014, 31, 317-336.

11.

McDowell, M. T.; Lee, S. W.; Nix, W. D.; Cui, Y., 25th Anniversary Article:

Understanding the Lithiation of Silicon and Other Alloying Anodes for Lithium-Ion Batteries. Adv.

Mater. 2013, 25, 4966-4985.

12.

Mukhopadhyay, A.; Sheldon, B. W., Deformation and Stress in Electrode Materials for Li-

Ion Batteries. Prog. Mater Sci. 2014, 63, 58-116.

13.

Huggins, R. A., Lithium Alloy Negative Electrodes. J. Power Sources 1999, 81-82, 13-19.

14.

Liu, W.; Zhi, H.; Yu, X., Recent Progress in Phosphorus Based Anode Materials for

Lithium/Sodium Ion Batteries. Energy Storage Mater. 2019, 16, 290-322.

15.

Fu, Y.; Wei, Q.; Zhang, G.; Sun, S., Advanced Phosphorus-Based Materials for

Lithium/Sodium-Ion Batteries: Recent Developments and Future Perspectives. Adv. Energy Mater.

2018, 8, 1703058.

16.

Zhou, S.; Li, J.; Fu, L.; Zhu, J.; Yang, W.; Li, D.; Zhou, L., Black Phosphorus/Hollow

Porous Carbon for High Rate Performance Lithium-Ion Battery. ChemElectroChem 2020, 7, 21842189.

17.

Liu, H.; Zhang, S.; Zhu, Q.; Cao, B.; Zhang, P.; Sun, N.; Xu, B.; Wu, F.; Chen, R., Fluffy

Carbon-Coated Red Phosphorus as a Highly Stable and High-Rate Anode for Lithium-Ion

Batteries. J. Mater. Chem. A 2019, 7, 11205-11213.

31

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

18.

Lin, W.; Huang, Y.-e.; Guan, L.; Huang, X.; Li, L.; Du, K.-Z.; Wu, X., Chalcogen-Doped

Red Phosphorus Nanoparticles @ Porous Carbon as High-Rate and Ultrastable Anode for LithiumIon Batteries. Carbon 2020, 170, 85-92.

19.

Liberale, F.; Fiore, M.; Ruffo, R.; Bernasconi, R.; Shiratori, S.; Magagnin, L., Red

Phosphorus Decorated Electrospun Carbon Anodes for High Efficiency Lithium Ion Batteries. Sci.

Rep. 2020, 10, 13233.

20.

Park, C.-M.; Sohn, H.-J., Black Phosphorus and Its Composite for Lithium Rechargeable

Batteries. Adv. Mater. 2007, 19, 2465-2468.

21.

Yuan, T.; Ruan, J.; Peng, C.; Sun, H.; Pang, Y.; Yang, J.; Ma, Z.-F.; Zheng, S., 3d Red

Phosphorus/Sheared Cnt Sponge for High Performance Lithium-Ion Battery Anodes. Energy

Storage Mater. 2018, 13, 267-273.

22.

Zhao, D.; Zhang, J.; Fu, C.; Huang, J.; Xiao, D.; Yuen, M. M. F.; Niu, C., Enhanced

Cycling Stability of Ring-Shaped Phosphorus inside Multi-Walled Carbon Nanotubes as Anodes

for Lithium-Ion Batteries. J. Mater. Chem. A 2018, 6, 2540-2548.

23.

Zhang, Y.; Tao, H.; Li, J.; Yang, X., Achieving a High-Performance P/C Anode through

P-O-C Bond for Sodium Ion Batteries. Ionics 2020, 26, 3377-3385.

24.

Ramireddy, T.; Xing, T.; Rahman, M. M.; Chen, Y.; Dutercq, Q.; Gunzelmann, D.;

Glushenkov, A. M., Phosphorus–Carbon Nanocomposite Anodes for Lithium-Ion and Sodium-Ion

Batteries. J. Mater. Chem. A 2015, 3, 5572-5584.

25.

Sun, J.; Zheng, G.; Lee, H.-W.; Liu, N.; Wang, H.; Yao, H.; Yang, W.; Cui, Y., Formation

of Stable Phosphorus–Carbon Bond for Enhanced Performance in Black Phosphorus

Nanoparticle–Graphite Composite Battery Anodes. Nano Lett. 2014, 14, 4573-4580.

32

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

26.

Jiao, X.; Liu, Y.; Li, T.; Zhang, C.; Xu, X.; Kapitanova, O. O.; He, C.; Li, B.; Xiong, S.;

Song, J., Crumpled Nitrogen-Doped Graphene-Wrapped Phosphorus Composite as a Promising

Anode for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2019, 11, 30858-30864.

27.

Wang, L.; Guo, H.; Wang, W.; Teng, K.; Xu, Z.; Chen, C.; Li, C.; Yang, C.; Hu, C.,

Preparation of Sandwich-Like Phosphorus/Reduced Graphene Oxide Composites as Anode

Materials for Lithium-Ion Batteries. Electrochim. Acta 2016, 211, 499-506.

28.

Zhu, X.; Yuan, Z.; Wang, X.; Jiang, G.; Xiong, J.; Yuan, S., Hydrothermal Synthesis of

Red Phosphorus @Reduced Graphene Oxide Nanohybrid with Enhanced Electrochemical

Performance as Anode Material of Lithium-Ion Battery. Appl. Surf. Sci. 2018, 433, 125-132.

29.

Sun, L.; Zhang, Y.; Zhang, D.; Zhang, Y., Amorphous Red Phosphorus Nanosheets

Anchored on Graphene Layers as High Performance Anodes for Lithium Ion Batteries. Nanoscale

2017, 9, 18552-18560.

30.

Xu, K., Electrolytes and Interphases in Li-Ion Batteries and Beyond. Chem. Rev. 2014, 114,

11503-11618.

31.

Eshetu, G. G.; Grugeon, S.; Laruelle, S.; Boyanov, S.; Lecocq, A.; Bertrand, J.-P.; Marlair,

G., In-Depth Safety-Focused Analysis of Solvents Used in Electrolytes for Large Scale Lithium

Ion Batteries. Phys. Chem. Chem. Phys. 2013, 15, 9145-9155.

32.

Ponrouch, A.; Monti, D.; Boschin, A.; Steen, B.; Johansson, P.; Palacín, M. R., Non-

Aqueous Electrolytes for Sodium-Ion Batteries. J. Mater. Chem. A 2015, 3, 22-42.

33.

Matsumoto, K.; Nishiwaki, E.; Hosokawa, T.; Tawa, S.; Nohira, T.; Hagiwara, R., Thermal,

Physical,

and

Electrochemical

Properties

of

Li[N(So2f)2]-[1-Ethyl-3-

Methylimidazolium][N(So2f)2] Ionic Liquid Electrolytes for Li Secondary Batteries Operated at

Room and Intermediate Temperatures. J. Phys. Chem. C 2017, 121, 9209-9219.

33

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

34.

Galiński, M.; Lewandowski, A.; Stępniak, I., Ionic Liquids as Electrolytes. Electrochim.

Acta 2006, 51, 5567-5580.

35.

Osada, I.; de Vries, H.; Scrosati, B.; Passerini, S., Ionic-Liquid-Based Polymer Electrolytes

for Battery Applications. Angew. Chem. Int. Ed. 2016, 55, 500-513.

36.

MacFarlane, D. R.; Tachikawa, N.; Forsyth, M.; Pringle, J. M.; Howlett, P. C.; Elliott, G.

D.; Davis, J. H.; Watanabe, M.; Simon, P.; Angell, C. A., Energy Applications of Ionic Liquids.

Energy Environ. Sci. 2014, 7, 232-250.

37.

Fukunaga, A.; Nohira, T.; Hagiwara, R.; Numata, K.; Itani, E.; Sakai, S.; Nitta, K.; Inazawa,

S., A Safe and High-Rate Negative Electrode for Sodium-Ion Batteries: Hard Carbon in NafsaC1c3pyrfsa Ionic Liquid at 363 k. J. Power Sources 2014, 246, 387-391.

38.

Wu, R.; Liu, X.; Zheng, Y.; Li, Y.; Shi, H.; Cheng, X.; Pfleging, W.; Zhang, Y., Unveiling

the Intrinsic Reaction between Silicon-Graphite Composite Anode and Ionic Liquid Electrolyte in

Lithium-Ion Battery. J. Power Sources 2020, 473, 228481.

39.

Piper, D. M.; Evans, T.; Leung, K.; Watkins, T.; Olson, J.; Kim, S. C.; Han, S. S.; Bhat,

V.; Oh, K. H.; Buttry, D. A.; Lee, S.-H., Stable Silicon-Ionic Liquid Interface for Next-Generation

Lithium-Ion Batteries. Nat. Commun. 2015, 6, 6230.

40.

Hassoun, J.; Fernicola, A.; Navarra, M. A.; Panero, S.; Scrosati, B., An Advanced Lithium-

Ion Battery Based on a Nanostructured Sn–C Anode and an Electrochemically Stable LitfsiPy24tfsi Ionic Liquid Electrolyte. J. Power Sources 2010, 195, 574-579.

41.

Li, H.; Martha, S. K.; Unocic, R. R.; Luo, H.; Dai, S.; Qu, J., High Cyclability of Ionic

Liquid-Produced Tio2 Nanotube Arrays as an Anode Material for Lithium-Ion Batteries. J. Power

Sources 2012, 218, 88-92.

34

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

42.

Ishikawa, M.; Sugimoto, T.; Kikuta, M.; Ishiko, E.; Kono, M., Pure Ionic Liquid

Electrolytes Compatible with a Graphitized Carbon Negative Electrode in Rechargeable LithiumIon Batteries. J. Power Sources 2006, 162, 658-662.

43.

Li, Q.; Chen, J.; Fan, L.; Kong, X.; Lu, Y., Progress in Electrolytes for Rechargeable Li-

Based Batteries and Beyond. Green Energy Environ. 2016, 1, 18-42.

44.

Wang, Y.; Turk, M. C.; Sankarasubramanian, M.; Srivatsa, A.; Roy, D.; Krishnan, S.,

Thermophysical and Transport Properties of Blends of an Ether-Derivatized Imidazolium Ionic

Liquid and a Li+-Based Solvate Ionic Liquid. J. Mater. Sci. 2017, 52, 3719-3740.

45.

Hwang, J.; Okada, H.; Haraguchi, R.; Tawa, S.; Matsumoto, K.; Hagiwara, R., Ionic Liquid

Electrolyte for Room to Intermediate Temperature Operating Li Metal Batteries: Dendrite

Suppression and Improved Performance. J. Power Sources 2020, 453, 227911.

46.

Dahbi, M.; Fukunishi, M.; Horiba, T.; Yabuuchi, N.; Yasuno, S.; Komaba, S., High

Performance Red Phosphorus Electrode in Ionic Liquid-Based Electrolyte for Na-Ion Batteries. J.

Power Sources 2017, 363, 404-412.

47.

Heist, A.; Lee, S.-H., Improved Stability and Rate Capability of Ionic Liquid Electrolyte

with High Concentration of Lifsi. J. Electrochem. Soc. 2019, 166, A1860-A1866.

48.

Zhang, H.; Qu, W.; Chen, N.; Huang, Y.; Li, L.; Wu, F.; Chen, R., Ionic Liquid Electrolyte

with Highly Concentrated Litfsi for Lithium Metal Batteries. Electrochim. Acta 2018, 285, 78-85.

49.

Wang, F.; Zi, W.; Zhao, B. X.; Du, H. B., Facile Solution Synthesis of Red Phosphorus

Nanoparticles for Lithium Ion Battery Anodes. Nanoscale Res. Lett. 2018, 13, 356.

50.

Kim, Y.; Park, Y.; Choi, A.; Choi, N.-S.; Kim, J.; Lee, J.; Ryu, J. H.; Oh, S. M.; Lee, K.

T., An Amorphous Red Phosphorus/Carbon Composite as a Promising Anode Material for Sodium

Ion Batteries. Adv. Mater. 2013, 25, 3045-3049.

35

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

51.

Huang, H.; Xiao, Q.; Wang, J.; Yu, X.-F.; Wang, H.; Zhang, H.; Chu, P. K., Black

Phosphorus: A Two-Dimensional Reductant for in Situ Nanofabrication. npj 2D Mater. Appl. 2017,

1, 20.

52.

Franke, R.; Chassé, T.; Streubel, P.; Meisel, A., Auger Parameters and Relaxation Energies

of Phosphorus in Solid Compounds. J. Electron. Spectrosc. Relat. Phenom. 1991, 56, 381-388.

53.

Taylor, J. A.; Lancaster, G. M.; Rabalais, J. W., Surface Alteration of Graphite, Graphite

Monofluoride and Teflon by Interaction with Ar+ and Xe+ Beams. Appl. Surf. Sci. 1978, 1, 503514.

54.

Hou, T.; Yang, G.; Rajput, N. N.; Self, J.; Park, S.-W.; Nanda, J.; Persson, K. A., The

Influence of Fec on the Solvation Structure and Reduction Reaction of Lipf6/Ec Electrolytes and

Its Implication for Solid Electrolyte Interphase Formation. Nano Energy 2019, 64, 103881.

55.

Sodhi, R. N. S.; Cavell, R. G., Kll Auger and Core Level (1s and 2p) Photoelectron Shifts

in a Series of Gaseous Sulfur Compounds. J. Electron. Spectrosc. Relat. Phenom. 1987, 42, 285.

56.

Contarini, S.; Rabalais, J. W., Ion Bombardment-Induced Decomposition of Li and Ba

Sulfates and Carbonates Studied by X-Ray Photoelectron Spectroscopy. J. Electron. Spectrosc.

Relat. Phenom. 1985, 35, 191-201.

57.

Abraham, K. M.; Chaudhri, S. M., The Lithium Surface Film in the Li / So 2 Cell. J.

Electrochem. Soc. 1986, 133, 1307-1311.

58.

Luo, X.-F.; Helal, A. S.; Hsieh, C.-T.; Li, J.; Chang, J.-K., Three-Dimensional Carbon

Framework Anode Improves Sodiation–Desodiation Properties in Ionic Liquid Electrolyte. Nano

Energy 2018, 49, 515-522.

59.

Reinhold, R.; Stoeck, U.; Grafe, H.-J.; Mikhailova, D.; Jaumann, T.; Oswald, S.; Kaskel,

S.; Giebeler, L., Surface and Electrochemical Studies on Silicon Diphosphide as Easy-to-Handle

36

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Anode Material for Lithium-Based Batteries—the Phosphorus Path. ACS Appl. Mater. Interfaces

2018, 10, 7096-7106.

60.

Bai, A.; Wang, L.; Li, J.; He, X.; Wang, J.; Wang, J., Composite of Graphite/Phosphorus

as Anode for Lithium-Ion Batteries. J. Power Sources 2015, 289, 100-104.

61.

Nagao, M.; Hayashi, A.; Tatsumisago, M., All-Solid-State Lithium Secondary Batteries

with High Capacity Using Black Phosphorus Negative Electrode. J. Power Sources 2011, 196,

6902-6905.

37

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Graphical abstract

38

...

参考文献をもっと見る