リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A digital twin reproducing gene regulatory network dynamics of early Ciona embryos indicates robust buffers in the network」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A digital twin reproducing gene regulatory network dynamics of early Ciona embryos indicates robust buffers in the network

Tokuoka, Miki Satou, Yutaka 京都大学 DOI:10.1371/journal.pgen.1010953

2023.09

概要

How gene regulatory networks (GRNs) encode gene expression dynamics and how GRNs evolve are not well understood, although these problems have been studied extensively. We created a digital twin that accurately reproduces expression dynamics of 13 genes that initiate expression in 32-cell ascidian embryos. We first showed that gene expression patterns can be manipulated according to predictions by this digital model. Next, to simulate GRN rewiring, we changed regulatory functions that represented their regulatory mechanisms in the digital twin, and found that in 55 of 100 cases, removal of a single regulator from a conjunctive clause of Boolean functions did not theoretically alter qualitative expression patterns of these genes. In other words, we found that more than half the regulators gave theoretically redundant temporal or spatial information to target genes. We experimentally substantiated that the expression pattern of Nodal was maintained without one of these factors, Zfpm, by changing the upstream regulatory sequence of Nodal. Such robust buffers of regulatory mechanisms may provide a basis of enabling developmental system drift, or rewiring of GRNs without changing expression patterns of downstream genes, during evolution.

この論文で使われている画像

参考文献

1.

Imai KS, Levine M, Satoh N, Satou Y. Regulatory blueprint for a chordate embryo. Science. 2006; 312:

1183–1187. https://doi.org/10.1126/science.1123404 PMID: 16728634

2.

Satou Y. A gene regulatory network for cell fate specification in Ciona embryos. Current topics in developmental biology. 2020; 139: 1–33.

3.

Hudson C, Sirour C, Yasuo H. Co-expression of Foxa.a, Foxd and Fgf9/16/20 defines a transient

mesendoderm regulatory state in ascidian embryos. Elife. 2016; 5: e14692.

4.

Tokuhiro S, Satou Y. Cis-regulatory code for determining the action of Foxd as both an activator and a

repressor in ascidian embryos. Dev Biol. 2021; 476: 11–17. https://doi.org/10.1016/j.ydbio.2021.03.010

PMID: 33753082

5.

Tokuoka M, Maeda K, Kobayashi K, Mochizuki A, Satou Y. The gene regulatory system for specifying

germ layers in early embryos of the simple chordate. Sci Adv. 2021; 7: eabf8210. https://doi.org/10.

1126/sciadv.abf8210 PMID: 34108211

6.

Tokuoka M, Kobayashi K, Satou Y. Distinct regulation of Snail in two muscle lineages of the ascidian

embryo achieves temporal coordination of muscle development. Development. 2018; 145: dev163915.

7.

Imai KS, Hino K, Yagi K, Satoh N, Satou Y. Gene expression profiles of transcription factors and signaling molecules in the ascidian embryo: towards a comprehensive understanding of gene networks.

Development. 2004; 131: 4047–4058. https://doi.org/10.1242/dev.01270 PMID: 15269171

8.

Albert R, Othmer HG. The topology of the regulatory interactions predicts the expression pattern of the

segment polarity genes in Drosophila melanogaster. Journal of theoretical biology. 2003; 223: 1–18.

9.

Espinosa-soto C, Padilla-Longoria P, Alvarez-Buylla ER. A gene regulatory network model for cell-fate

determination during Arabidopsis thalianal flower development that is robust and recovers experimental

gene expression profiles. Plant Cell. 2004; 16: 2923–2939.

10.

Peter IS, Faure E, Davidson EH. Predictive computation of genomic logic processing functions in

embryonic development. Proc Natl Acad Sci U S A. 2012; 109: 16434–16442. https://doi.org/10.1073/

pnas.1207852109 PMID: 22927416

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010953 September 27, 2023

17 / 19

PLOS GENETICS

Robust buffers in gene regulation

11.

Sanchez L, Thieffry D. A logical analysis of the Drosophila gap-gene system. Journal of theoretical biology. 2001; 211: 115–141.

12.

Hudson C, Darras S, Caillol D, Yasuo H, Lemaire P. A conserved role for the MEK signalling pathway in

neural tissue specification and posteriorisation in the invertebrate chordate, the ascidian Ciona intestinalis. Development. 2003; 130: 147–159.

13.

Hudson C, Kawai N, Negishi T, Yasuo H. β-catenin-driven binary fate specification segregates germ

layers in ascidian embryos. Curr Biol. 2013; 23: 491–495.

14.

Imai KS, Hudson C, Oda-Ishii I, Yasuo H, Satou Y. Antagonism between β-catenin and Gata.a sequentially segregates the germ layers of ascidian embryos. Development. 2016; 143: 4167–4172.

15.

Kumano G, Takatori N, Negishi T, Takada T, Nishida H. A maternal factor unique to ascidians silences

the germline via binding to P-TEFb and RNAP II regulation. Curr Biol. 2011; 21: 1308–1313. https://doi.

org/10.1016/j.cub.2011.06.050 PMID: 21782435

16.

Oda-Ishii I, Abe T, Satou Y. Dynamics of two key maternal factors that initiate zygotic regulatory programs in ascidian embryos. Dev Biol. 2018; 437: 50–59. https://doi.org/10.1016/j.ydbio.2018.03.009

PMID: 29550363

17.

Oda-Ishii I, Kubo A, Kari W, Suzuki N, Rothbacher U, Satou Y. A maternal system initiating the zygotic

developmental program through combinatorial repression in the ascidian embryo. PLoS genetics. 2016;

12: e1006045. https://doi.org/10.1371/journal.pgen.1006045 PMID: 27152625

18.

Oda-Ishii I, Satou Y. Initiation of the zygotic genetic program in the ascidian embryo. Semin Cell Dev

Biol. 2018; 84: 111–117. https://doi.org/10.1016/j.semcdb.2018.02.012 PMID: 29438806

19.

Ohta N, Satou Y. Multiple signaling pathways coordinate to induce a threshold response in a chordate

embryo. PLoS genetics. 2013; 9: e1003818. https://doi.org/10.1371/journal.pgen.1003818 PMID:

24098142

20.

Ohta N, Waki K, Mochizuki A, Satou Y. A Boolean function for neural induction reveals a critical role of

direct intercellular interactions in patterning the ectoderm of the ascidian embryo. PLoS Comput Biol.

2015; 11: e1004687. https://doi.org/10.1371/journal.pcbi.1004687 PMID: 26714026

21.

Rothba¨cher U, Bertrand V, Lamy C, Lemaire P. A combinatorial code of maternal GATA, Ets and βcatenin-TCF transcription factors specifies and patterns the early ascidian ectoderm. Development.

2007; 134: 4023–4032.

22.

Shirae-Kurabayashi M, Matsuda K, Nakamura A. Ci-Pem-1 localizes to the nucleus and represses

somatic gene transcription in the germline of Ciona intestinalis embryos. Development. 2011; 138:

2871–2881.

23.

Tassy O, Daian F, Hudson C, Bertrand V, Lemaire P. A quantitative approach to the study of cell shapes

and interactions during early chordate embryogenesis. Curr Biol. 2006; 16: 345–358. https://doi.org/10.

1016/j.cub.2005.12.044 PMID: 16488868

24.

Yagi K, Satoh N, Satou Y. Identification of downstream genes of the ascidian muscle determinant gene

Ci-macho1. Dev Biol. 2004; 274: 478–489.

25.

Tsang AP, Visvader JE, Turner CA, Fujiwara Y, Yu CN, Weiss MJ, et al. FOG, a multitype zinc finger

protein, acts as a cofactor for transcription factor GATA-1 in erythroid and megakaryocytic differentiation. Cell. 1997; 90: 109–119. https://doi.org/10.1016/s0092-8674(00)80318-9 PMID: 9230307

26.

Bertrand V, Hudson C, Caillol D, Popovici C, Lemaire P. Neural tissue in ascidian embryos is induced

by FGF9/16/20, acting via a combination of maternal GATA and Ets transcription factors. Cell. 2003;

115: 615–627. https://doi.org/10.1016/s0092-8674(03)00928-0 PMID: 14651852

27.

Imai KS, Kobayashi K, Kari W, Rothbacher U, Ookubo N, Oda-Ishii I, et al. Gata is ubiquitously required

for the earliest zygotic gene transcription in the ascidian embryo. Dev Biol. 2020; 458: 215–227. https://

doi.org/10.1016/j.ydbio.2019.11.009 PMID: 31751550

28.

Hudson C, Yasuo H. Patterning across the ascidian neural plate by lateral Nodal signalling sources.

Development. 2005; 132: 1199–1210. https://doi.org/10.1242/dev.01688 PMID: 15750182

29.

Hudson C, Yasuo H. A signalling relay involving Nodal and Delta ligands acts during secondary notochord induction in Ciona embryos. Development. 2006; 133: 2855–2864.

30.

Hong JW, Hendrix DA, Levine MS. Shadow enhancers as a source of evolutionary novelty. Science.

2008; 321: 1314. https://doi.org/10.1126/science.1160631 PMID: 18772429

31.

Oda-Ishii I, Bertrand V, Matsuo I, Lemaire P, Saiga H. Making very similar embryos with divergent

genomes: conservation of regulatory mechanisms of Otx between the ascidians Halocynthia roretzi and

Ciona intestinalis. Development. 2005; 132: 1663–1674.

32.

Oudelaar AM, Higgs DR. The relationship between genome structure and function. Nature Reviews

Genetics. 2021; 22: 154–168. https://doi.org/10.1038/s41576-020-00303-x PMID: 33235358

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010953 September 27, 2023

18 / 19

PLOS GENETICS

Robust buffers in gene regulation

33.

Wittkopp PJ, Kalay G. Cis-regulatory elements: molecular mechanisms and evolutionary processes

underlying divergence. Nature Reviews Genetics. 2012; 13: 59–69.

34.

Yuh CH, Bolouri H, Davidson EH. Cis-regulatory logic in the endo16 gene: switching from a specification

to a differentiation mode of control. Development. 2001; 128: 617–629. https://doi.org/10.1242/dev.

128.5.617 PMID: 11171388

35.

Tokuhiro S, Tokuoka M, Kobayashi K, Kubo A, Oda-Ishii I, Satou Y. Differential gene expression along

the animal-vegetal axis in the ascidian embryo is maintained by a dual functional protein Foxd. PLoS

genetics. 2017; 13: e1006741. https://doi.org/10.1371/journal.pgen.1006741 PMID: 28520732

36.

Imai KS, Satou Y, Satoh N. Multiple functions of a Zic-like gene in the differentiation of notochord, central nervous system and muscle in Ciona savignyi embryos. Development. 2002; 129: 2723–2732.

37.

Yu D, Oda-Ishii I, Kubo A, Satou Y. The regulatory pathway from genes directly activated by maternal

factors to muscle structural genes in ascidian embryos. Development. 2019; 146: dev173104. https://

doi.org/10.1242/dev.173104 PMID: 30674480

38.

Khoueiry P, Rothbacher U, Ohtsuka Y, Daian F, Frangulian E, Roure A, et al. A cis-regulatory signature

in ascidians and flies, independent of transcription factor binding sites. Curr Biol. 2010; 20: 792–802.

https://doi.org/10.1016/j.cub.2010.03.063 PMID: 20434338

39.

Coulcher JF, Roure A, Chowdhury R, Robert M, Lescat L, Bouin A, et al. Conservation of peripheral nervous system formation mechanisms in divergent ascidian embryos. Elife. 2020; 9: e59157. https://doi.

org/10.7554/eLife.59157 PMID: 33191918

40.

Lowe EK, Stolfi A. Developmental system drift in motor ganglion patterning between distantly related

tunicates. Evodevo. 2018; 9: 18. https://doi.org/10.1186/s13227-018-0107-0 PMID: 30062003

41.

Satou Y, Kawashima T, Shoguchi E, Nakayama A, Satoh N. An integrated database of the ascidian,

Ciona intestinalis: Towards functional genomics. Zool Sci. 2005; 22: 837–843.

42.

Satou Y, Tokuoka M, Oda-Ishii I, Tokuhiro S, Ishida T, Liu B, et al. A Manually Curated Gene Model Set

for an Ascidian, Ciona robusta (Ciona intestinalis Type A). Zool Sci. 2022; 39: 253–260.

43.

Satou Y, Mineta K, Ogasawara M, Sasakura Y, Shoguchi E, Ueno K, et al. Improved genome assembly

and evidence-based global gene model set for the chordate Ciona intestinalis: new insight into intron

and operon populations. Genome Biol. 2008; 9: R152.

44.

Lemaire P, Garrett N, Gurdon JB. Expression cloning of Siamois, a Xenopus homeobox gene

expressed in dorsal-vegetal cells of blastulae and able to induce a complete secondary axis. Cell. 1995;

81: 85–94.

45.

Brinkman EK, Chen T, Amendola M, van Steensel B. Easy quantitative assessment of genome editing

by sequence trace decomposition. Nucleic Acids Res. 2014; 42: e168. https://doi.org/10.1093/nar/

gku936 PMID: 25300484

46.

Satou Y, Nakamura R, Yu D, Yoshida R, Hamada M, Fujie M, et al. A nearly complete genome of Ciona

intestinalis type A (C. robusta) reveals the contribution of inversion to chromosomal evolution in the

genus Ciona. Genome biology and evolution. 2019; 11: 3144–3157.

47.

Picco V, Hudson C, Yasuo H. Ephrin-Eph signalling drives the asymmetric division of notochord/neural

precursors in Ciona embryos. Development. 2007; 134: 1491–1497.

48.

Shi W, Levine M. Ephrin signaling establishes asymmetric cell fates in an endomesoderm lineage of the

Ciona embryo. Development. 2008; 135: 931–940.

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010953 September 27, 2023

19 / 19

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る