リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Detrital Zircon U-Pb Geochronology and Provenance Analysis of Sedimentary Rocks in the Paleo-Kuril Arc System (Nemuro and Tokoro Belts), Eastern Hokkaido, Northern Japan.」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Detrital Zircon U-Pb Geochronology and Provenance Analysis of Sedimentary Rocks in the Paleo-Kuril Arc System (Nemuro and Tokoro Belts), Eastern Hokkaido, Northern Japan.

Harisma 京都大学 DOI:10.14989/doctor.k24175

2022.09.26

概要

北海道東部に分布する古千島弧の起源に関しては,かつて海洋性島弧だった地塊がプレート沈み込みに伴って付加したものとする説と,大陸地殻の縁辺に発達した陸弧が分離して現在の位置へ移動してきたものとする説が対立していた.そこで,本研究は砕屑性ジルコンのウラン鉛(U-Pb)年代測定によって古千島弧の堆積岩の供給源を求め,そこからこの島弧の起源の推定を試みた.本研究では根室帯および常呂帯の上部白亜系〜古第三系砂岩から16の試料を採取し,砕屑性ジルコン粒子の抽出を行った.それらの粒子に対して年代測定を行った結果,二つのU-Pb年代分布が得られた.タイプ1は26億年前から6500万年前までに複数のピークを持つ幅広い年代分布である.このうち,先カンブリア紀(18-19億年前)に形成された粒子が豊富に含まれていることがタイプ1年代分布の特徴である.一方,タイプ2の年代分布はほぼ単峰性であり,古第三紀(6500-5200万年前)に形成されたジルコン粒子しかほとんど含まれていない.これらの年代分布の違いは,暁新世にこの地域で大きな堆積物供給源の変化が起こったことを表している.この堆積物供給源の変化は根室帯根室層群霧多布層と汐見層の間および常呂帯湧別層群上芭露層と安国層の間で発生していた.タイプ1の先カンブリア紀のジルコン粒子は,古千島弧が海洋性島弧ではなく大陸地殻の縁辺域に形成された陸弧であったことをはっきりと示している.おそらく,この地域への堆積物の供給源は白亜紀に現在のオホーツク海に存在していたオホーツク古陸であろう.一方,タイプ2の砂岩はほぼ堆積同時的な年代を示すジルコン粒子のみが含まれており,火山性島弧自体が砕屑物の供給源であったことが伺われる.何らかの理由により,この島弧は大陸地殻の供給源から暁新世に切り離されたものと思われる.このイベントの発生は,イザナギ=太平洋プレート間の海嶺沈み込みおよび古千島弧・日本島弧の衝突が起こったと推定される年代とおおよそ一致している.すなわち,本研究の成果は古千島弧が海洋性島弧として発達した仮説を否定するものである.このことは,北太平洋地域の地史復元に重要な制約条件となることが期待される.

この論文で使われている画像

参考文献

Anson, G. L., & Kodama, K. P. (1987). Compaction‐induced inclination shallowing of the post‐depositional remanent magnetization in a synthetic sediment. Geophysical Journal of the Royal Astronomical Society, 88(3), 673–692. https://doi.org/10.1111/j.1365-246X.1987.tb01651.x

Aoki, K., Isozaki, Y., Yamamoto, S., Maki, K., Yokoyama, T., & Hirata, T. (2012). Tectonic erosion in a Pacific-type orogen: Detrital zircon response to Cretaceous tectonics in Japan. Geology, 40(12), 1087–1090. https://doi.org/10.1130/G33414.1

Bamba, T. (1984). The Tokoro Belt, A Tectonic Unit of the Central Axial Zone of Hokkaido. Jour. Fac., Sci., Hokkaido Univ., Ser. IV, 21(1), 21–75. http://hdl.handle.net/2115/36725%0A

Bazhenov, M. L., & Burtman, V. S. (1994). Upper Cretaceous Paleomagnetic Data from Shikotan Island, Kuril Arc: Implications for plate kinematics. Earth and Planetary Science Letters, 122(1–2), 19–28. https://doi.org/10.1016/0012-821X(94)90048-5

Bazhenov, M. L., Zharov, A. E., Levashova, N. M., Kodama, K., Bragin, N. Y., Fedorov, P. I., Bragina, L. G., & Lyapunov, S. M. (2001). Paleomagnetism of a Late Cretaceous island arc complex from South Sakhalin, East Asia: Convergent boundaries far away from the Asian continental margin? Journal of Geophysical Research: Solid Earth, 106(B9), 19,193-19,205. https://doi.org/10.1029/2000jb900458

Bindeman, I. N., Vinogradov, V. I., Valley, J. W., Wooden, J. L., & Natal’in, B. A. (2002). Archean protolith and accretion of crust in Kamchatka: SHRIMP dating of zircons from Sredinny and Ganal Massifs. Journal of Geology, 110(3), 271–289. https://doi.org/10.1086/339532

Blow, R. A., & Hamilton, N. (1978). Effect of compaction on the acquisition of a detrital remanent magnetization in fine‐grained sediments. Geophysical Journal of the Royal Astronomical Society, 52(1), 13–23. https://doi.org/10.1111/j.1365-246X.1978.tb04219.x

Cawood, P. A., Hawkesworth, C. J., & Dhuime, B. (2012). Detrital zircon record and tectonic setting. Geology, 40(10), 875–878. https://doi.org/10.1130/G32945.1

Celaya, M. A., & Clement, B. M. (1988). Inclination Shallowing in Deep Sea Sediments from the North Atlantic. Geophysical Research Letters, 15(1), 52–55.

Cherniak, D. J., & Watson, E. B. (2001). Pb diffusion in zircon. Chemical Geology, 172(1–2), 5–24. https://doi.org/10.1016/S0009-2541(00)00233-3

Choi, T., Lee, Y. Il, & Orihashi, Y. (2016). Crustal growth history of the Korean Peninsula: Constraints from detrital zircon ages in modern river sediments. Geoscience Frontiers, 7, 707–714. https://doi.org/10.1016/j.gsf.2016.05.003

Cogné, J. P., Besse, J., Chen, Y., & Hankard, F. (2013). A new late cretaceous to present APWP for Asia and its implications for paleomagnetic shallow inclinations in Central Asia and Cenozoic Eurasian plate deformation. Geophysical Journal International, 192, 1000–1024. https://doi.org/10.1093/gji/ggs104

Corfu, F., Hanchar, J. M., Hoskin, P. W. O., & Kinny, P. (2003). Atlas of Zircon Textures. Reviews in Mineralogy and Geochemistry, 53(1), 469–500. https://doi.org/10.2113/0530469

Dickinson, W., Lawton, T. F., Pecha, M., Davis, S. J., Gehrels, G. E., & Young, R. A. (2012). Provenance of the Paleogene Colton Formation (Uinta Basin) and Cretaceous– Paleogene provenance evolution in the Utah foreland: Evidence from U-Pb ages of detrital zircons, paleocurrent trends, and sandstone petrofacies. Geosphere, 8(4), 854– 880. https://doi.org/10.1130/GES00763.1

Dickinson, W. R., & Gehrels, G. E. (2008). Sediment Delivery to the Cordilleran Foreland Basin: Insights from U-Pb Ages of Detrital Zircons in Upper Jurassic and Cretaceous Strata of the Colorado Plateau. American Journal of Science, 308, 1041–1082. https://doi.org/10.2475/10.2008.01

Dickinson, W. R., & Gehrels, G. E. (2009a). Use of U-Pb ages of detrital zircons to infer maximum depositional ages of strata: A test against a Colorado Plateau Mesozoic database. Earth and Planetary Science Letters, 288(1–2), 115–125. https://doi.org/10.1016/j.epsl.2009.09.013

Dickinson, W. R., & Gehrels, G. E. (2009b). U-Pb ages of detrital zircons in Jurassic eolian and associated sandstones of the Colorado Plateau: Evidence for transcontinental dispersal and intraregional recycling of sediment. Geological Society of America Bulletin, 121(3–4), 408–433. https://doi.org/10.1130/B26406.1

Dickinson, W. R., Lawton, T. F., Pecha, M., Davis, S. J., Gehrels, G. E., & Young, R. A. (2012). Provenance of the Paleogene Colton Formation (Uinta Basin) And CretaceousPaleogene provenance evolution in the Utah foreland: Evidence from U-Pb ages of detrital zircons, paleocurrent trends, and sandstone petrofacies. Geosphere, 8(4), 854–880. https://doi.org/10.1130/GES00763.1

Domeier, M., Shephard, G. E., Jakob, J., Gaina, C., Doubrovine, P. V., & Torsvik, T. H. (2017). Intraoceanic subduction spanned the Pacific in the Late Cretaceous–Paleocene. Science Advances, 3(11), 1–6. https://doi.org/10.1126/sciadv.aao2303

Eggins, S. M., Kinsley, L. P. J., & Shelley, J. M. G. (1998). Deposition and element fractionation processes during atmospheric pressure laser sampling for analysis by ICPMS. Applied Surface Science, 127–129, 278–286. https://doi.org/10.1016/S0169- 4332(97)00643-0

Fedo, C. M., Sircombe, K. N., & Rainbird, R. H. (2003). Detrital zircon analysis of the sedimentary record. Reviews in Mineralogy and Geochemistry, 53(November). https://doi.org/10.2113/0530277

Fujiwara, Y., & Kanamatsu, T. (1994). On the age of bending structure in eastern Hokkaido. Chishitsu News, 478, 45-48. (in Japanese).

Fujiwara, Y., Nanayama, F., & Kanamatsu, T. (1995). Tectonic evolution of two Paleo arctrench systems in Hokkaido, Northern Japan. Geofisica Internacional, 34(3), 283–291.

Gehrels, G. (2012). Detrital Zircon U-Pb Geochronology: Current Methods and New Opportunities. In C. Busby & A. Azor (Eds.), Tectonics of Sedimentary Basins (pp. 45– 62). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781444347166.ch2

Gehrels, G. E., & Dickinson, W. R. (1995). Detrital zircon provenance of Cambrian to Triassic miogeoclinal and eugeoclinal strata in Nevada. American Journal of Science, 295(1), 18–48. https://doi.org/10.2475/ajs.295.1.18

Gehrels, G. E., Valencia, V. A., & Ruiz, J. (2008). Enhanced precision, accuracy, efficiency, and spatial resolution of U-Pb ages by laser ablation-multicollector-inductively coupled plasma-mass spectrometry. Geochemistry, Geophysics, Geosystems, 9(3), 1–13. https://doi.org/10.1029/2007GC001805

Grebennikov, A. V., Kemkin, I. V., & Khanchuk, A. I. (2021). Paleocene–early Eocene postsubduction magmatism in Sikhote-Alin (Far East Russia): New constraints for the tectonic history of the Izanagi-Pacific ridge and the East Asian continental margin.

Geoscience Frontiers, 12(4), 101142. https://doi.org/10.1016/j.gsf.2021.101142

Günther, D., & Heinrich, C. A. (1999). Enhanced sensitivity in laser ablation-ICP mass spectrometry using helium-argon mixtures as aerosol carrier. Journal of Analytical Atomic Spectrometry, 14(9), 1363–1368. https://doi.org/10.1039/a901648a

Hamano, Y., Tsunakawa, H., Saito, Y., & Kikawa, E. (1986). Paleomagnetism of the eastern Hokkaido. Chikyu Monthly, 8, 434-438. (in Japanese).

Hiess, J., Condon, D. J., McLean, N., & Noble, S. R. (2012). 238U/235U systematics in terrestrial uranium-bearing minerals. Science, 335(6076), 1610–1614. https://doi.org/10.1126/science.1215507

Hoskin, P. W. O., & Black, L. P. (2000). Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. Journal of Metamorphic Geology, 18(4), 423–439. https://doi.org/10.1046/j.1525-1314.2000.00266.x

Hua, Y., Zhao, D., Xu, Y., & Wang, Z. (2019). Arc-arc collision caused the 2018 Eastern

Iburi earthquake (M 6.7) in Hokkaido, Japan. Scientific Reports, 9(1), 1–9. https://doi.org/10.1038/s41598-019-50305-x

Ireland, T. R., & Williams, I. S. (2003). Considerations in Zircon Geochronology by SIMS. Reviews in Mineralogy and Geochemistry, 53(1), 215–241. https://doi.org/10.2113/0530215

Ishizaka, Y., Isozaki, Y., & Tsutsumi, Y. (2021). Provenance Change in Cretaceous–Paleogene Fore-arc in Western Hokkaido: U–Pb Dating of Detrital Zircons from the Yezo Group. Journal of Geography (Chigaku Zasshi), 130(1), 63–83. https://doi.org/10.5026/jgeography.130.63

Isozaki, Y., Aoki, K., Nakama, T., & Yanai, S. (2010). New insight into a subduction-related orogen: A reappraisal of the geotectonic framework and evolution of the Japanese

Islands. Gondwana Research, 18(1), 82–105. https://doi.org/10.1016/j.gr.2010.02.015

Iwano, H., Orihashi, Y., Hirata, T., Ogasawara, M., Danhara, T., Horie, K., Hasebe, N., Sueoka, S., Tamura, A., Hayasaka, Y., Katsube, A., Ito, H., Tani, K., Kimura, J. I., Chang, Q., Kouchi, Y., Haruta, Y., & Yamamoto, K. (2013). An inter-laboratory evaluation of OD-3 zircon for use as a secondary U-Pb dating standard. Island Arc, 22(3), 382–394. https://doi.org/10.1111/iar.12038

Iwasaki, T., Adachi, K., Moriya, T., Miyamachi, H., Matsushima, T., Miyashita, K., Takeda, T., Taira, T., Yamada, T., & Ohtake, K. (2004). Upper and middle crustal deformation of an arc - Arc collision across Hokkaido, Japan, inferred from seismic refraction/wideangle reflection experiments. Tectonophysics, 388(1-4 SPEC. ISS.), 59–73. https://doi.org/10.1016/j.tecto.2004.03.025

Iwata, K., & Tajika, J. (1986). Late Cretaceous Radiolarians of the Yubetsu Group, Tokoro Belt, Northeast Hokkaido. Jour. Fac., Sci., Hokkaido Univ., Ser. IV, 21(4), 619–644.

Iwata, K., & Tajika, J. (1992). Early Paleogene radiolarians from green and red mudstones in the Yubetsu Group and reconsideration of the age of their sedimentation.

Iwata, K., Watanabe, M., Nakamura, K., & Uozumi, S. (1983). Occurrence of Jurassic and Cretaceous radiolarians from the pre-Tertiary systems around Lake Saroma, Northeast Hokkaido. Earth Sci., 37, 225-228. (in Japanese).

Jackson, M. J., Banerjee, S. K., Marvin, J. A., Lu, R., & Gruber, W. (1991). Detrital Remanence, Inclination Errors, and Anhysteretic Remanence Anisotropy: Quantitative Model and Experimental Results. Geophysical Journal International, 104(1), 95–103. https://doi.org/10.1111/j.1365-246X.1991.tb02496.x

Jochum, K. P., & Brueckner, S. M. (2008). Reference materials in geoanalytical and environmental research - Review for 2006 and 2007. Geostandards and Geoanalytical Research, 32(4), 405–452. https://doi.org/10.1111/j.1751-908X.2008.00916.x

Jochum, K. P., Weis, U., Stoll, B., Kuzmin, D., Yang, Q., Raczek, I., Jacob, D. E., Stracke, A., Birbaum, K., Frick, D. A., Günther, D., & Enzweiler, J. (2011). Determination of reference values for NIST SRM 610-617 glasses following ISO guidelines. Geostandards and Geoanalytical Research, 35(4), 397–429. https://doi.org/10.1111/j.1751-908X.2011.00120.x

Jolivet, L. (1986). A tectonic model for the evolution of the Hokkaido Central Belt: Late Jurassic collision of the Okhotsk with Eurasia. Monograph Assoc. Geol. Collab. Japan, 31, 355–377.

Jolivet, L. (1987). America-Eurasia plate boundary in eastern Asia and the opening of marginal basins. Earth and Planetary Science Letters, 81(2–3), 282–288. https://doi.org/10.1016/0012-821X(87)90164-6

Jolivet, L., Fournier, M., Huchon, P., Rozhdestvenskiy, V. S., Sergeyev, K. F., & Oscorbin, L. S. (1992). Cenozoic intracontinental dextral motion in the Okhotsk-Japan Sea Region. Tectonics, 11(5), 968–977. https://doi.org/10.1029/92TC00337

Jolivet, L., & Miyashita, S. (1985). The Hidaka Shear Zone (Hokkaido, Japan): Genesis during a right-lateral strike-slip movement. Tectonics, 4(3), 289–302. https://doi.org/10.1029/TC004i003p00289

Kaiho, K. (1983). Geologic ages of the Paleogene of Hokkaido, Japan based upon planktonic foraminifera: The relationship between the hiatuses and sea-level movements. Fossils, 34, 41–49. https://doi.org/https://doi.org/10.14825/kaseki.34.0_41

Katagiri, T., Naruse, H., Hirata, T., & Hattori, K. (2016). U-Pb age of the tuff bed in the Urahoro Group, eastern Hokkaido, northern Japan. The Journal of the Geological Society of Japan, 122(9), 495-503. (in Japanese with English abstract). https://doi.org/10.5575/geosoc.2016.0021

Katagiri, T., Naruse, H., Ishikawa, N., & Hirata, T. (2019). Collisional bending of the western Paleo-Kuril Arc deduced from paleomagnetic analysis and U–Pb age determination. Island Arc, 29(1), 1–23. https://doi.org/10.1111/iar.12329

Kim, S. W., Kwon, S., Park, S. I., Lee, C., Cho, D. L., Lee, H. J., Ko, K., & Kim, S. J. (2016). SHRIMP U–Pb dating and geochemistry of the Cretaceous plutonic rocks in the

Korean Peninsula: A new tectonic model of the Cretaceous Korean Peninsula. Lithos, 262, 88–106. https://doi.org/10.1016/j.lithos.2016.06.027

Kiminami, K. (1978). Stratigraphic re-examination of the Nemuro Group. Chikyu Kagaku, 32(3), 120-132. (in Japanese with English abstract). https://doi.org/https://doi.org/10.15080/agcjchikyukagaku.32.3_120

Kiminami, K. (1983). Sedimentary history of the late Cretaceous-Paleocene Nemuro Group, Hokkaido, Japan: A forearc basin of the Paleo-Kuril arc-trench system. The Journal of the Geological Society of Japan, 89(11), 607–624. https://doi.org/10.5575/geosoc.89.607

Kiminami, K., Kito, N., & Tajika, J. (1985). Mesozoic Group in Hokkaido-Stratigraphy and Age, and their Significance. Chik.-Kag (Earth Sci.), 39(1), 1–17. (in Japanese with English abstract).

Kiminami, K., Komatsu, M., Niida, K., & Kito, N. (1986). Tectonic divisions and stratigraphy of the Mesozoic rocks of Hokkaido, Japan. Monograph Assoc. Geol. Collab. Japan, 31, 1-15. (in Japanese with English abstract).

Kiminami, K., & Kontani, Y. (1979). Pre-Cretaceous Paleocurrents of the Northeastern Hidaka Belt, Hokkaido, Japan. 北海道大学理学部紀要, 19(1–2), 179–188. http://hdl.handle.net/2115/36682%0A

Kiminami, K., & Kontani, Y. (1983). Sedimentology of the Saroma Group, northern Tokoro Belt, Hokkaido. Chik.-Kag (Earth Sci.), 37(1), 38-47. (in Japanese with English abstract).

Kiminami, K., Shibata, K., & Uchiumi, S. (1990). K-Ar age of a tuff from the Yubetsu Group in the Tokoro Belt, Hokkaido, Japan. Jour. Geol. Soc. Japan, 96(1), 77-80. (in Japanese).

Kimura, G. (1994). The latest Cretaceous-early Paleogene rapid growth of accretionary complex and exhumation of high pressure series metamorphic rocks in northwestern Pacific margin. Journal of Geophysical Research, 99(B11), 22,147-22,164. https://doi.org/10.1029/94jb00959

Kimura, Gaku. (1986). Oblique subduction and collision: Forearc tectonics of the Kuril arc. Geology, 14(5), 404. https://doi.org/10.1130/0091- 7613(1986)14<404:OSACFT>2.0.CO;2

Kimura, Gaku. (1996). Collision orogeny at arc-arc junctions in the Japanese Islands. The Island Arc, 5(3), 262–275. https://doi.org/10.1111/j.1440-1738.1996.tb00031.x

Kimura, Gaku, Kitamura, Y., Yamaguchi, A., Kameda, J., Hashimoto, Y., & Hamahashi, M. (2019). Origin of the early Cenozoic belt boundary thrust and Izanagi–Pacific ridge subduction in the western Pacific margin. Island Arc, 28(5), 1–15. https://doi.org/10.1111/iar.12320

Kimura, Gaku, & Tamaki, K. (1985). The Kuril arc and Kuril basin - The relationship between rotation of backarc plate and backarc spreading. Journal of Geography (Chigaku Zasshi), 94(2), 69-83. (In Japanese with English abstract). https://doi.org/10.5026/jgeography.94.2_69

Kimura, Gaku, & Tamaki, K. (1986). Collision, rotation, and back-arc spreading in the region of the Okhotsk and Japan Seas. Tectonics, 5(3), 389–401. https://doi.org/10.1029/TC005i003p00389

Kurita, H. (2004). Paleogene Dinoflagellate Cyst Biostratigraphy of Northern Japan. Micropaleontology, 50, 1–50. https://www.jstor.org/stable/4097057

Kurita, H., & Tajika, J. (1998a). Tectonic implication of Early Eocene dinoflagellate cysts from the Mukai-engaru Formation of the Yubetsu Group, Tokoro Belt, eastern Hokkaido, Japan. Journal of the Geological Society of Japan, 104(11), 808-811. (in Japanese with English abstract).

Kurita, H., & Tajika, J. (1998b). Tectonic implications of Early Eocene dinoflagellate cysts from the Mukai-engaru Formation of the Yubetsu Group, Tokoro Belt, eastern Hokkadio, Japan. Jour. Geol. Soc. Japan, 104(11), 808-811. (in Japanese with English abstract).

Kusunoki, K., & Kimura, G. (1998). Collision and extrusion at the Kuril-Japan arc junction. Tectonics, 17(6), 843–858. https://doi.org/10.1029/98TC02699

Li, X. H. (2000). Cretaceous magmatism and lithospheric extension in Southeast China. Journal of Asian Earth Sciences, 18, 293–305. https://doi.org/10.1016/S1367- 9120(99)00060-7

Liu, K., Zhang, J., Xiao, W., Wilde, S. A., & Alexandrov, I. (2020). A review of magmatism and deformation history along the NE Asian margin from ca. 95 to 30 Ma: Transition from the Izanagi to Pacific plate subduction in the early Cenozoic. Earth-Science Reviews, 209(February), 103317. https://doi.org/10.1016/j.earscirev.2020.103317

Maeda, J. (1990). Opening of the Kuril Basin deduced from the magmatic history of Central Hokkaido, North Japan. Tectonophysics, 174(3–4), 235–255. https://doi.org/10.1016/0040-1951(90)90324-2

Makino, Y., Kuroki, Y., & Hirata, T. (2019). Determination of major to trace elements in metallic materials based on the solid mixing calibration method using multiple spot-laser ablation-ICP-MS. Journal of Analytical Atomic Spectrometry, 34(9), 1794–1799. https://doi.org/10.1039/c9ja00181f

Maruyama, S., Isozaki, Y., Kimura, G., & Terabayashi, M. (1997). Paleogeographic maps of the Japanese Islands: Plate tectonic synthesis from 750 Ma to the present. Island Arc, 6(1), 121–142. https://doi.org/10.1111/j.1440-1738.1997.tb00043.x

Matsui, M. (1962). Sedimentological Study of the Paleogene Basin of Kushiro in Hokkaido, Japan. Journal of the Faculty of Science, Hokkaido University. Series 4, Geology and Mineralogy, 11(3), 431–480. http://hdl.handle.net/2115/35929

Matsumoto, T. (1970). Geological ages of the Mesozoic systems. In Sedimentary History of the Late Cretaceous-Paleocene Nemuro Group, Hokkaido, Japan: A Forearc Basin of the Paleo-Kuril Arc-Trench System. Kiminami, K. (1983). Journal of the Geological Society of Japan, 89.

Matsumoto, Tatsuro, Kanie, Y., & Yoshida, S. (1979). Notes on Pachydiscus from Hokkaido : Studies on the Cretaceous Ammonites from Hokkaido and SaghalienXXXIX. Memoirs of the Faculty of Science, Kyūsyū University. Series D, Geology, 24(2), 47–74. https://doi.org/10.5109/1544207

McLennan, S. M., Bock, B., Compston, W., Hemming, S. R., & McDaniel, D. K. (2001). Detrital Zircon Geochronology of Taconian and Acadian Foreland Sedimentary Rocks in New England. Journal of Sedimentary Research, 71(2), 305–317. https://doi.org/10.1306/072600710305

Müller, R. D., Seton, M., Zahirovic, S., Williams, S. E., Matthews, K. J., Wright, N. M., Shephard, G. E., Maloney, K. T., Barnett-Moore, N., Hosseinpour, M., Bower, D. J., & Cannon, J. (2016). Ocean Basin Evolution and Global-Scale Plate Reorganization Events since Pangea Breakup. Annual Review of Earth and Planetary Sciences, 44, 107– 138. https://doi.org/10.1146/annurev-earth-060115-012211

Nanayama, F., Kanamatsu, T., & Fujiwara, Y. (1993). Sedimentary petrology and paleotectonic analysis of the arc-arc junction: the Paleocene Nakanogawa Group in the Hidaka Belt, central Hokkaido, Japan. Palaeogeography, Palaeoclimatology, Palaeoecology, 105, 53–69. https://doi.org/10.1016/0031-0182(93)90106-S

Nanayama, F., Nakagawa, M., & Okada, H. (1994). Chemistry of detrital chromian spinels from the Eocene Urahoro Group, in the eastern Hokkaido and its origin. The Journal of the Geological Society of Japan, 100(6), 383–398. https://doi.org/10.5575/geosoc.100.383

Nanayama, F., Tajika, J., Yamasaki, T., Kurita, H., Iwano, H., Danhara, T., & Hirata, T. (2021). The emplacement of in situ greenstones in the northern Hidaka belt: The tectonic relationship between subduction of the Izanagi–Pacific ridge and Hidaka magmatic activity. Island Arc, 30(1), 1–33. https://doi.org/10.1111/iar.12403

Nanayama, F., Yamasaki, T., Iwano, H., Danhara, T., & Hirata, T. (2019). Zircon U–Pb ages of sedimentary complexes in the Hidaka Belt: New age data on the northern and southern areas of the Paleogene Nakanogawa Group, central Hokkaido, northern Japan. The Journal of the Geological Society of Japan, 125(6), 421–438. https://doi.org/10.5575/geosoc.2019.0011

Naruse, H. (2003). Cretaceous to Paleocene depositional history of North-Pacific subduction zone: Reconstruction from the Nemuro Group, eastern Hokkaido, northern Japan. Cretaceous Research, 24(1), 55–71. https://doi.org/10.1016/S0195-6671(03)00024-7

Naruse, H., Maeda, H., & Shigeta, Y. (2000). Newly discovered Late Cretaceous molluscan fossils and inferred K/T boundary in the Nemuro Group, eastern Hokkaido, northern Japan. The Journal of the Geological Society of Japan, 106(2), 161–164. https://doi.org/10.5575/geosoc.106.161

Nifuku, K., Kodama, K., Shigeta, Y., & Naruse, H. (2009). Faunal turnover at the end of the Cretaceous in the North Pacific region: Implications from combined magnetostratigraphy and biostratigraphy of the Maastrichtian Senpohshi Formation in the eastern Hokkaido Island, northern Japan. Palaeogeography, Palaeoclimatology, Palaeoecology, 271(1–2), 84–95. https://doi.org/10.1016/j.palaeo.2008.09.012

Nugraha, A. M. S., & Hall, R. (2018). Late Cenozoic palaeogeography of Sulawesi, Indonesia. Palaeogeography, Palaeoclimatology, Palaeoecology, 490, 191–209. https://doi.org/10.1016/j.palaeo.2017.10.033

Okada, H., Tarduno, J. A., Nakaseko, K., Nishimura, A., Sliter, W. V., & Okada, H. (1989). Microfossil assemblages from the Late Jurassic to Early Cretaceous Nikoro pelagic sediments, Tokoro Belt, Hokkaido, Japan. Memoirs - Kyushu University, Faculty of Science, Series D: Geology, 26(3), 193–214. https://doi.org/10.5109/1546555

Okada, H., Yamada, M., Matsuoka, H., Murota, T., & Isobe, T. (1987). Calcareous nannofossils and biostratigraphy of the Upper Cretaceous and lower Paleogene Nemuro Group, eastern Hokkaido, Japan. Journal - Geological Society of Japan, 93(5), 329–348. https://doi.org/10.5575/geosoc.93.329

Okada, Hisatake, & Kaiho, K. (1992). Paleogene Calcareous Nannofossils from Hokkaido, Japan. Centenary of Japanese Micropaleontology, 461–471.

Okazaki, Y., & Nagahama, H. (1963). OBORO, Explanatory Text of the Geological Map of Japan, Scale 1:50.000. Japan: Hokkaido Bureau, Ministry of Land, Infrastructure, Transport and Tourism.

Otofuji, Y. I., Sato, K., Iba, N., & Matsuda, T. (1997). Cenozoic northward translation of the Kitakami massif in northeast Japan: Paleomagnetic evidence. Earth and Planetary Science Letters, 153(1–2), 119–132. https://doi.org/10.1016/s0012-821x(97)00163-5

Parrish, R. R., & Noble, S. R. (2003). Zircon U-Th-Pb Geochronology by Isotope Dilution - Thermal Ionization Mass Spectrometry (ID-TIMS). Reviews in Mineralogy and Geochemistry, 53(1), 183–213. https://doi.org/10.2113/0530183

Pearce, N. J. G., Perkins, W. T., Westgate, J. A., Gorton, M. P., Jackson, S. E., Neal, C. R., & Chenery, S. P. (1997). A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostandards Newsletter, 21(1), 115–144. https://doi.org/10.1111/j.1751-908X.1997.tb00538.x Rojas-Agramonte, Y., Kröner, A., Demoux, A., Xia, X., Wang, W., Donskaya, T., Liu, D., & Sun, M. (2011). Detrital and xenocrystic zircon ages from Neoproterozoic to Palaeozoic arc terranes of Mongolia: Significance for the origin of crustal fragments in the Central Asian Orogenic Belt. Gondwana Research, 19, 751–763. https://doi.org/10.1016/j.gr.2010.10.004

Rubatto, D. (2002). Zircon trace element geochemistry: Partitioning with garnet and the link between U-Pb ages and metamorphism. Chemical Geology, 184(1–2), 123–138. https://doi.org/10.1016/S0009-2541(01)00355-2

Sagiya, T., Miyazaki, S., & Tada, T. (2000). Continuous GPS array and present-day crustal deformation of Japan. Pure and Applied Geophysics, 157(11–12), 2303–2322. https://doi.org/10.1007/978-3-0348-7695-7_26

Sakai, S., Hirano, N., DIlek, Y., MacHida, S., Yasukawa, K., & Kato, Y. (2019). Tokoro Belt (NE Hokkaido): An exhumed, Jurassic - Early Cretaceous seamount in the Late Cretaceous accretionary prism of northern Japan. Geological Magazine, 158(1), 72–83. https://doi.org/10.1017/S0016756819000633

Sakakibara, M. (1986). A newly discovered high-pressure terrane in eastern Hokkaido, Japan. J. Metamorphic Geol., 4, 401–408.

Sakakibara, M., Niida, K., Toda, H., Kito, N., Kimura, G., Tajika, J., Katoh, T., Yoshida, A., & Belt, R. G. of the T. (1986). Nature and tectonic history of the Tokoro Belt. Monograph of the Association for the Geological Collaboration in Japan, 31, 173-187. (In Japanese with English abstract).

Sakakibara, M., & Tanaka, K. (1986). Discovery of Inoceramus from the Saroma Group, the Tokoro Belt, northeastern Hokkaido. Chik.-Kag (Earth Sci.), 40(3), 205-206. (In Japanese).

Sakata, S., Hirakawa, S., Iwano, H., Danhara, T., Guillong, M., & Hirata, T. (2017). A new approach for constraining the magnitude of initial disequilibrium in Quaternary zircons by coupled uranium and thorium decay series dating. Quaternary Geochronology, 38, 1– 12. https://doi.org/10.1016/j.quageo.2016.11.002

Sasa, Y. (1940a). Stratigraphy of the Tertiary deposits in the Kushiro coal field and a critical review of the opinions expressed (1). Journal of Hokkaido Coal Mine Association, 307, 1-19. (in Japanese).

Sasa, Y. (1940b). Stratigraphy of the Tertiary deposits in the Kushiro coal field and a critical review of the opinions expressed (2). Journal of Hokkaido Coal Mine Association, 308, 1-24. (in Japanese).

Sato, D., Matsuura, H., & Yamamoto, T. (2016). Timing of the Late Cretaceous ignimbrite flare-up at the eastern margin of the Eurasian Plate: New zircon U-Pb ages from the Aioi-Arima-Koto region of SW Japan. Journal of Volcanology and Geothermal Research, 310, 89–97. https://doi.org/10.1016/j.jvolgeores.2015.11.014

Schellart, W. P., Jessell, M. W., & Lister, G. S. (2003). Asymmetric deformation in the backarc region of the Kuril arc, northwest Pacific: New insights from analogue modeling. Tectonics, 22(5). https://doi.org/10.1029/2002TC001473

Segawa, J., & Furuta, T. (1978). Geophysical study of the mafic belts along the margins of the japanese islands. Tectonophysics, 44(1–4), 1–26. https://doi.org/10.1016/0040-1951(78)90060-4

Seton, M., Flament, N., Whittaker, J., Müller, R. D., Gurnis, M., & Bower, D. J. (2015). Ridge subduction sparked reorganization of the Pacific plate-mantle system 60-50 million years ago. Geophysical Research Letters, 42(6), 1732–1740. https://doi.org/10.1002/2015GL063057

Shibata, K. (1986). Isotopic ages of alkali rocks from the Nemuro Group in Hokkaido, Japan: Late Cretaceous time-scale points. Chemical Geology: Isotope Geoscience Section, 59,163–169. https://doi.org/10.1016/0168-9622(86)90068-0

Shigeta, Y., & Tsutsumi, Y. (2018). U-Pb age of the Sphenoceramus schmidti Zone (middle Campanian, Cretaceous) in Hokkaido, northern Japan. Bull. Natl. Mus. Nat. Sci., 13–18.

Stacey, J. S., & Kramers, J. D. (1975). Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters, 26(2), 207–221. https://doi.org/10.1016/0012-821X(75)90088-6

Stanley A. Tyler. (1931). The Petrography of Some Bottom Samples from the North Pacific Ocean. SEPM Journal of Sedimentary Research, Vol. 1(4), 12–22. https://doi.org/10.1306/74D703EE-2B21-11D7-8648000102C1865D

Taira, A. (2001). Tectonic evolution of the Japanese island arc system. Annual Review of Earth and Planetary Sciences, 29(June), 109–134. https://doi.org/10.1146/annurev.earth.29.1.109

Tajika, J, & Yahata, M. (1991). Explanatory text of the geological map of Japan,“Engaru”, Scale 1: 50,000. Geological Survey of Hokkaido, 104p (in Japanese with English abstract).

Tajika, Jun. (1988). Stratigraphy and structure of the Upper Cretaceous Yubetsu Group, Tokoro Belt, eastern Hokkaido-an application of trench accretion model-. Jour. Geol. Soc. Japan, 94(11), 817-836. (in Japanese with English abstract). http://www.mendeley.com/research/geology-volcanic-history-eruptive-style-yakedakevolcano-group-central-japan/

Tamaki, M., Oshimbe, S., & Itoh, Y. (2008). A large latitudinal displacement of a part of Cretaceous forearc basin in Hokkaido, Japan: paleomagnetism of the Yezo Supergroup in the Urakawa area. The Journal of the Geological Society of Japan, 114(5), 207–217. https://doi.org/10.5575/geosoc.114.207

Tanai, T. (1970). The Oligocene Floras from the Kushiro Coal Field, Hokkaido, Japan. Journal of the Faculty of Science, Hokkaido University. Series 4, Geology and Mineralogy, 14(4), 383–514. http://hdl.handle.net/2115/36000

Vaes, B., van Hinsbergen, D. J. J., & Boschman, L. M. (2019). Reconstruction of Subduction and Back-Arc Spreading in the NW Pacific and Aleutian Basin: Clues to Causes of Cretaceous and Eocene Plate Reorganizations. Tectonics, 38(4), 1367–1413. https://doi.org/10.1029/2018TC005164

Vermeesch, P. (2018). IsoplotR: A free and open toolbox for geochronology. Geoscience Frontiers, 9(5), 1479–1493. https://doi.org/10.1016/j.gsf.2018.04.001

Verzhbitsky, E. V., & Kononov, M. V. (2006). Geodynamic evolution of the lithosphere of the Sea of Okhotsk region from geophysical data. Izvestiya, Physics of the Solid Earth, 42(6), 490–501. https://doi.org/10.1134/S1069351306060061

Vishnevskaya, V. S. (1986). Middle to Late Cretaceous radiolarian zonation of the Bering region, U.S.S.R. Marine Micropaleontology, 11(1–3), 139–149. https://doi.org/10.1016/0377-8398(86)90010-1

Walker, J. D., Geissman, J. W., Bowring, S. A., & Babcock, L. E. (2013). The geological society of America geologic time scale. Bulletin of the Geological Society of America, 125(3–4), 259–272. https://doi.org/10.1130/B30712.1

Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W. L., Meier, M., Oberli, F., Quadt, A. VON, Roddick, J. C., & Spiegel, W. (1995). Three Natural Zircon Standards for U‐Th‐Pb, Lu‐Hf, Trace Element and REE Analyses. Geostandards Newsletter, 19(1), 1–23. https://doi.org/10.1111/j.1751-908X.1995.tb00147.x

Worrall, D. M., Kruglyak, V., Kunst, F., & Kuznetsov, V. (1996). Tertiary tectonics of the Sea of Okhotsk, Russia: Far-field effects of the India-Eurasia collision. Tectonics, 15(4), 813–826. https://doi.org/10.1029/95TC03684

Wu, F. Y., Sun, D. Y., Ge, W. C., Zhang, Y. Bin, Grant, M. L., Wilde, S. A., & Jahn, B. M. (2011). Geochronology of the Phanerozoic granitoids in northeastern China. Journal of Asian Earth Sciences, 41, 1–30. https://doi.org/10.1016/j.jseaes.2010.11.014

Wu, F. Y., Zhang, Y. Bin, Yang, J. H., Xie, L. W., & Yang, Y. H. (2008). Zircon U-Pb and Hf isotopic constraints on the Early Archean crustal evolution in Anshan of the North China Craton. Precambrian Research, 167(3–4), 339–362. https://doi.org/10.1016/j.precamres.2008.10.002

Wu, J. T.-J., & Wu, J. (2019). Izanagi-Pacific ridge subduction revealed by a 56 to 46 Ma magmatic gap along the northeast Asian margin. Geology, 47(10), 953–957. https://doi.org/10.1130/G46778.1

Xiang, L., & Shu, L. S. (2010). Pre-Devonian tectonic evolution of the eastern South China Block: Geochronological evidence from detrital zircons. Science China Earth Sciences, 53, 1427–1444. https://doi.org/10.1007/s11430-010-4061-5

Yamaguchi, S., Tsushima, K., & Satoh, H. (Eds.). (1978). 1:500.000 Geological Map Sheet 2KUSHIRO. Japan: Geological Survey of Japan. https://gbank.gsj.jp/geonavi/geonavi.php

Yamamoto, T. (2003). Lithofacies and eruption ages of Late Cretaceous caldera volcanoes in the Himeji-Yamasaki district, southwest Japan: Implications for ancient large-scale felsic arc volcanism. Island Arc, 12, 294–309. https://doi.org/10.1046/j.1440- 1738.2003.00396.x

Yamasaki, T., & Nanayama, F. (2017). Enriched mid–ocean ridge basalt–type geochemistry of basalts and gabbros from the Nikoro Group, Tokoro Belt, Hokkaido, Japan. Journal of Mineralogical and Petrological Sciences, 112(6), 311–323. https://doi.org/10.2465/jmps.170613

Yamasaki, T., Shimoda, G., Tani, K., Maeda, J., & Nanayama, F. (2021). Subduction of the Izanagi-Pacific Ridge–transform intersection at the northeastern end of the Eurasian plate. Geology, 49(8), 952–957. https://doi.org/10.1130/g48611.1

Yokoyama, T. D., Suzuki, T., Kon, Y., & Hirata, T. (2011). Determinations of rare earth element abundance and U-Pb age of zircons using multispot laser ablation-inductively coupled plasma mass spectrometry. Analytical Chemistry, 83(23), 8892–8899. https://doi.org/10.1021/ac2012448

Zhang, Y. Bin, Zhai, M., Hou, Q. L., Li, T. S., Liu, F., & Hu, B. (2012). Late Cretaceous volcanic rocks and associated granites in Gyeongsang Basin, SE Korea: Their chronological ages and tectonic implications for cratonic destruction of the North China Craton. Journal of Asian Earth Sciences, 47, 252–264. https://doi.org/10.1016/j.jseaes.2011.12.011

Zhang, S. H., Zhao, Y., Davis, G. A., Ye, H., & Wu, F. (2014). Temporal and spatial variations of Mesozoic magmatism and deformation in the North China Craton: Implications for lithospheric thinning and decratonization. Earth-Science Reviews, 131(11), 49–87. https://doi.org/10.1016/j.earscirev.2013.12.004

Zhao, G., Wang, Y., Huang, B., Dong, Y., Li, S., Zhang, G., & Yu, S. (2018). Geological reconstructions of the East Asian blocks: From the breakup of Rodinia to the assembly of Pangea. Earth-Science Reviews, 186(October), 262–286. https://doi.org/10.1016/j.earscirev.2018.10.003

Zhao, G., & Zhai, M. (2013). Lithotectonic elements of Precambrian basement in the North China Craton: Review and tectonic implications. Gondwana Research, 23(4), 1207– 1240. https://doi.org/10.1016/j.gr.2012.08.016

Zhao, P., Alexandrov, I., Jahn, B. ming, & Ivin, V. (2018). Timing of Okhotsk Sea Plate Collision With Eurasia Plate: Zircon U-Pb Age Constraints From the Sakhalin Island, Russian Far East. Journal of Geophysical Research: Solid Earth, 123(9), 8279–8293. https://doi.org/10.1029/2018JB015800

Zhao, P., Jahn, B. ming, & Xu, B. (2017). Elemental and Sr-Nd isotopic geochemistry of Cretaceous to Early Paleogene granites and volcanic rocks in the Sikhote-Alin Orogenic Belt (Russian Far East): implications for the regional tectonic evolution. Journal of Asian Earth Sciences, 146, 383–401. https://doi.org/10.1016/j.jseaes.2017.06.017

Zhao, P., Li, J., Alexandrov, I., Ivin, V., & Jahn, B. (2017). Involvement of old crustal materials during formation of the Sakhalin Island (Russian Far East) and its paleogeographic implication: Constraints from detrital zircon ages of modern river sand and Miocene sandstone. Journal of Asian Earth Sciences, 146, 412–430. https://doi.org/10.1016/j.jseaes.2017.06.031

Zhou, J. B., Cao, J. L., Wilde, S. A., Zhao, G. C., Zhang, J. J., & Wang, B. (2014). PaleoPacific subduction-accretion: Evidence from Geochemical and U-Pb zircon dating of the Nadanhada accretionary complex, NE China. Tectonics, 33(12), 2444–2466. https://doi.org/10.1002/2014TC003637

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る