リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Up-To-Date Magnetic Resonance Imaging Findings for the Diagnosis of Hypothalamic and Pituitary Tumors」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Up-To-Date Magnetic Resonance Imaging Findings for the Diagnosis of Hypothalamic and Pituitary Tumors

Kurosaki, Masamichi Sakamoto, Makoto Kambe, Atsushi Ogura, Takafumi 鳥取大学 DOI:10.33160/yam.2021.05.002

2021.05.20

概要

Magnetic resonance imaging (MRI) is the preferred imaging technique for the sellar and parasellar regions. In this review article, we report our clinical experience with MRI for hypothalamic and pituitary lesions, such as pituitary adenomas, craniopharyngiomas, Rathke cleft cysts, germinoma, and hypophysitis with reference to the histopathological findings through a review of the literature. Our previous study indicated that three dimensional-spoiled gradient echo sequence is a more suitable sequence for evaluating sellar lesions on postcontrast T1 weighted image (WI). This image demonstrates the defined relationship between the tumor and its surroundings, such as the normal pituitary gland, cavernous sinus, and optic pathway. We demonstrated the characteristic MRI findings of functioning pituitary adenoma. In growth hormone-producing adenoma, signal intensity on T2WI is important to differentiate densely from sparsely granulated somatotroph adenomas. In prolactin-producing pituitary adenomas, distinct hypointense areas in early phase on T2WI, possibly owning to diffuse hemorrhage, indicate pronounced regressions of invasive macroprolactinomas during cabergoline therapy. The two histopathological subtypes, adamantinomatous and squamous papillary craniopharyngioma, differ in genesis. Calcified tumors are mostly adamantinomatous type. On MRI, these lesions have a heterogenous appearance with a solid portion and cystic components. The solid portions and cyst wall enhance heterogeneously. Although cyst fluid of Rathke cleft cysts show variable intensities on MRI, intracystic waxy nodule can be hypointense on T2WI. The enhancing cyst wall may contain the squamous metaplasia. Cystic lesions of the sellar and parasellar areas may be difficult to differentiate on a clinical, imaging, or even histopathological basis.

この論文で使われている画像

参考文献

1 Maya MM, Pressman BD. Pituitary imaging. In: Melmed S,

editor. The pituitary, 3rd ed. San Diego, CA: Academic Press;

2011. p. 677-702.

2 Osborn AG. Sellar neoplasms and tumor-like lesions. In:

Renlund AR, editor. Osborn’s brain imaging, pathology, and

anatomy. Manitoba, Canada: Amirsys Publishing, Inc; 2013. p.

681-771.

3 Kakite S, Fujii S, Kurosaki M, Kanasaki Y, Matsusue E,

Kaminou T, et al. Three-dimensional gradient echo versus

spin echo sequence in contrast-enhanced imaging of the pituitary gland at 3T. Eur J Radiol. 2011;79:108-12. DOI: 10.1016/

j.ejrad.2009.12.036, PMID: 20116954

4 Pinker K, Ba-Ssalamah A, Wolfsberger S, Mlynarik V,

Knosp E, Trattnig S. The value of high-field MRI (3T) in the

assessment of sellar lesions. Eur J Radiol. 2005;54:327-34.

DOI: 10.1016/j.ejrad.2004.08.006, PMID: 15899332

5 Wolfsberger S, Ba-Ssalamah A, Pinker K, Mlynárik V,

Czech T, Knosp E, et al. Application of three-tesla magnetic

resonance imaging for diagnosis and surgery of sellar

lesions. J Neurosurg. 2004;100:278-86. DOI: 10.3171/

jns.2004.100.2.0278, PMID: 15086236

6 Haacke EM, Xu Y, Cheng YCN, Reichenbach JR. Susceptibility weighted imaging (SWI). Magn Reson Med.

2004;52:612-8. DOI: 10.1002/mrm.20198, PMID: 15334582

7 Elster AD, Chen MY, Williams DW III, Key LL. Pituitary

gland: MR imaging of physiologic hy per t rophy in

adolescence. Radiology. 1990;174:681-5. DOI: 10.1148/radiology.174.3.2305049, PMID: 2305049

8 Sakai N, Koizumi S, Yamashita S, Takehara Y, Sakahara H,

Baba S, et al. Arterial spin-labeled perfusion imaging reflects

vascular density in nonfunctioning pituitary macroadenomas.

AJNR Am J Neuroradiol. 2013;34:2139-43. DOI: 10.3174/ajnr.

A3564, PMID: 23721898

9 Kurihara N, Takahashi S, Higano S, Ikeda H, Mugikura S,

Singh LN, et al. Hemorrhage in pituitary adenoma: correlation of MR imaging with operative findings. Eur Radiol.

1998;8:971-6. DOI: 10.1007/s003300050498, PMID: 9683703

10 Onesti ST, Wisniewski T, Post KD. Clinical versus subclinical

pituitary apoplexy: presentation, surgical management, and

outcome in 21 patients. Neurosurgery. 1990;26:980-6. DOI:

10.1227/00006123-199006000-00010, PMID: 2362675

11 Wakai S, Fukushima T, Teramoto A, Sano K. Pituitary

apoplexy: its incidence and clinical significance. J Neurosurg.

1981;55:187-93. DOI: 10.3171/jns.1981.55.2.0187, PMID:

7252541

12 Kurosaki M, Tabuchi S, Akatsuka K, Kamitani H, Watanabe

T. Application of phase sensitive imaging (PSI) for

hemorrhage diagnosis in pituitary adenomas. Neurol Res.

2010;32:614-9. DOI: 10.1179/174313209X455709, PMID:

19660234

13 Colao A, Boscaro M, Ferone D, Casanueva FF. Managing

Cushing’s disease: the state of the art. Endocrine. 2014;47:920. DOI: 10.1007/s12020-013-0129-2, PMID: 24415169

14 Yamada S, Fukuhara N, Nishioka H, Takeshita A, Inoshita

N, Ito J, et al. Surgical management and outcomes in patients

with Cushing disease with negative pituitary magnetic

resonance imaging. World Neurosurg. 2012;77:525-32. DOI:

10.1016/j.wneu.2011.06.033, PMID: 22120352

Fig. 11. Postcontrast T1-weighted MR images of a 66-year-old

man with lymphocytic hypophysitis. A swollen pituitary stalk is

visible as an enhanced lesion. (a) Coronall view (b) Sagittal view.

they recommend the T2*-based MRI in differentiating

pure germinomas from nongerminomatous germ cell

tumors.

LYMPHOCYTIC HYPOPHYSITIS

Primary hypophysitis is classified by histologic appearance as lymphocytic, granulomatous, xanthomatous,

immunoglobulin G4 plasmacytic,33 and mixed form.

Lymphocytic hypophysitis is an inflammatory disorder

of the pituitary gland, which occurs in the adenohypophysis and/or infundibulo-neurohypophysis. 34, 35

Lymphocytic hypophysitis is often misdiagnosed

because its clinical and radiological features mimic

tumors in the sellar region. When the inflammatory

process is limited to the infundibulo-neurohypophysis,

infundibular thickening and absence of the posterior

pituitary high signal intensity spot are common on

T1WI (Fig. 11). Differentiation from other stalk lesions,

such as germinoma and Langerhans cell histiocytosis,

may be difficult. Dark-signal intensity areas on T2WI

around the pituitary gland and in the cavernous sinus,

namely the parasellar T2 dark sign was reported as a

characteristic feature useful for distinguishing pituitary

adenoma from this disease in patients with lymphocytic

hypophysitis.36

CONCLUSION

Our clinical experience with 3T MR images was reported

with emphasis on hypothalamic and pituitary tumors.

Because of the high signal-to-noise ratio, 3T MRI was

superior to 1.5T MRI in visualization of tumors, as well

as the surroundings. Especially, T2WI and postcontrast

SPGR T1WI provide high anatomical and contrast

resolution. These images demonstrate the defined relationship between the tumor and its surroundings, such

as the normal pituitary gland, the cavernous sinus, and

the optic pathway.

160

© 2021 Tottori University Medical Press

Up-to-date MRI findings of pituitary tumors

15 Patronas N, Bulakbasi N, Stratakis CA, Lafferty A, Oldfield

EH, Doppman J, et al. Spoiled gradient recalled acquisition

in the steady state technique is superior to conventional postcontrast spin echo technique for magnetic resonance imaging

detection of adrenocorticotropin-secreting pituitary tumors.

J Clin Endocrinol Metab. 2003;88:1565-9. DOI: 10.1210/

jc.2002-021438, PMID: 12679440

16 Kasaliwal R, Sankhe SS, Lila AR, Budyal SR, Jagtap VS,

Sarathi V, et al. Volume interpolated 3D-spoiled gradient

echo sequence is better than dynamic contrast spin echo sequence for MRI detection of corticotropin secreting pituitary

microadenomas. Horumon To Rinsho. 2013;78:825-30. DOI:

10.1111/cen.12069, PMID: 23061773

17 Heck A, Emblem KE, Casar-Borota O, Bollerslev J, Ringstad

G. Quantitative analyses of T2-weighted MRI as a potential

marker for response to somatostatin analogs in newly diagnosed acromegaly. Endocrine. 2016;52:333-43. DOI: 10.1007/

s12020-015-0766-8, PMID: 26475495

18 Hagiwara A, Inoue Y, Wakasa K, Haba T, Tashiro T,

Miyamoto T. Comparison of growth hormone-producing and

non-growth hormone-producing pituitary adenomas: imaging characteristics and pathologic correlation. Radiology.

2003;228:533-8. DOI: 10.1148/radiol.2282020695, PMID:

12819334

19 Casanueva FF, Molitch ME, Schlechte JA, Abs R, Bonert

V, Bronstein MD, et al. Guidelines of the Pituitary Society

for the diagnosis and management of prolactinomas.

Horumon To Rinsho. 2006;65:265-73. DOI: 10.1111/j.13652265.2006.02562.x, PMID: 16886971

20 Melmed S, Casanueva FF, Hoffman AR, Kleinberg DL,

Montori VM, Schlechte JA, et al.; Endocrine Society.

Diagnosis and treatment of hyperprolactinemia: an Endocrine

Society clinical practice guideline. J Clin Endocrinol Metab.

2011;96:273-88. DOI: 10.1210/jc.2010-1692, PMID: 21296991

21 Colao A, Di Sarno A, Landi ML, Scavuzzo F, Cappabianca P,

Pivonello R, et al. Macroprolactinoma shrinkage during cabergoline treatment is greater in naive patients than in patients

pretreated with other dopamine agonists: a prospective study

in 110 patients. J Clin Endocrinol Metab. 2000;85:2247-52.

DOI: 10.1210/jc.85.6.2247, PMID: 10852458

22 Kurosaki M, Kambe A, Watanabe T, Fujii S, Ogawa T.

Serial 3 T magnetic resonance imaging during cabergoline

treatment of macroprolactinomas. Neurol Res. 2015;37:341-6.

DOI: 10.1179/1743132814Y.0000000457, PMID: 25376133

23 Brastianos PK, Taylor-Weiner A, Manley PE, Jones RT,

Dias-Santagata D, Thorner AR, et al. Exome sequencing

identifies BRAF mutations in papillary craniopharyngiomas.

Nat Genet. 2014;46:161-5. DOI: 10.1038/ng.2868, PMID:

24413733

24 Nishioka H, Haraoka J, Izawa H, Ikeda Y. Magnetic resonance imaging, clinical manifestations, and management of

Rathke’s cleft cyst. Horumon To Rinsho. 2006;64:184-8. DOI:

10.1111/j.1365-2265.2006.02446.x, PMID: 16430718

25 Binning MJ, Gottfried ON, Osborn AG, Couldwell WT.

Rathke cleft cyst intracystic nodule: a characteristic magnetic

resonance imaging finding. J Neurosurg. 2005;103:837-40.

DOI: 10.3171/jns.2005.103.5.0837, PMID: 16304987

26 Aho CJ, Liu C, Zelman V, Couldwell WT, Weiss MH. Surgical outcomes in 118 patients with Rathke cleft cysts. J Neurosurg. 2005;102:189-93. DOI: 10.3171/jns.2005.102.2.0189,

PMID: 15739543

27 Benveniste RJ, King WA, Walsh J, Lee JS, Naidich TP, Post

KD. Surgery for Rathke cleft cysts: technical considerations

and outcomes. J Neurosurg. 2004;101:577-84. DOI: 10.3171/

jns.2004.101.4.0577, PMID: 15481709

28 Amhaz HH, Chamoun RB, Waguespack SG, Shah K,

McCutcheon IE. Spontaneous involution of Rathke cleft cysts:

is it rare or just underreported? J Neurosurg. 2010;112:132732. DOI: 10.3171/2009.10.JNS091070, PMID: 19929199

29 Paulus W, Honegger J, Keyvani K, Fahlbusch R. Xanthogranuloma of the sellar region: a clinicopathological entity

different from adamantinomatous craniopharyngioma. Acta

Neuropathol. 1999;97:377-82. DOI: 10.1007/s004010051001,

PMID: 10208277

30 Zada G, Lin N, Ojerholm E, Ramkissoon S, Laws ER.

Craniopharyngioma and other cystic epithelial lesions of the

sellar region: a review of clinical, imaging, and histopathological relationships. Neurosurg Focus. 2010;28:E4. DOI:

10.3171/2010.2.FOCUS09318, PMID: 20367361

31 Fujisawa I, Asato R, Okumura R, Nakano Y, Shibata

T, Hamanaka D, et al. Magnetic resonance imaging of

neurohypophyseal germinomas. Cancer. 1991;68:100914. DOI: 10.1002/1097-0142(19910901)68:5<1009::AIDCNCR2820680517>3.0.CO;2-R, PMID: 1913472

32 Morana G, Alves CA, Tortora D, Finlay JL, Severino M,

Nozza P, et al. T2*-based MR imaging (gradient echo or

susceptibility-weighted imaging) in midline and off-midline

intracranial germ cell tumors: a pilot study. Neuroradiology.

2018;60:89-99. DOI: 10.1007/s00234-017-1947-3, PMID:

29128947

33 Shikuma J, Kan K, Ito R, Hara K, Sakai H, Miwa T, et al.

Critical review of IgG4-related hypophysitis. Pituitary.

2017;20:282-91. DOI: 10.1007/s11102-016-0773-7, PMID:

27812776

34 Levine SN, Benzel EC, Fowler MR, Shroyer JV III,

Mirfakhraee M. Lymphocytic adenohypophysitis: clinical,

radiological, and magnetic resonance imaging characterization. Neurosurgery. 1988;22:937-41. DOI: 10.1227/00006123198805000-00025, PMID: 3380286

35 Imura H, Nakao K, Shimatsu A, Ogawa Y, Sando T, Fujisawa I,

et al. Lymphocytic infundibuloneurohypophysitis as a cause

of central diabetes insipidus. N Engl J Med. 1993;329:683-9.

DOI: 10.1056/NEJM199309023291002, PMID: 8345854

36 Nakata Y, Sato N, Masumoto T, Mori H, Akai H, Nobusawa

H, et al. Parasellar T2 dark sign on MR imaging in patients

with lymphocytic hypophysitis. AJNR Am J Neuroradiol.

2010;31:1944-50. DOI: 10.3174/ajnr.A2201, PMID: 20651017

161

© 2021 Tottori University Medical Press

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る