リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Spatial non-uniformity of stress in the forearc region: an example of the middle Miocene southwest Japan arc」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Spatial non-uniformity of stress in the forearc region: an example of the middle Miocene southwest Japan arc

Abe, Noriaki 京都大学 DOI:10.14989/doctor.k24428

2023.03.23

概要

1.1 Non-uniform stress in subduction zones
Revealing crustal stress and its transition is fundamental for understanding the mechanism and driving force of tectonics. Stress in the subduction zone reflects subductionrelated forces such as slab-induced dragging or pushing (perpendicular to the subduction
interface) and shear force driven by the subduction plate (along the interface) besides mantle
drag force acting on the base of the upper plate (Bal´azs et al., 2022). When only interaction between the subducting plate and the upper plate determines the upper plate stress, the
island arc suffers spatially uniform tension or compression (Chemenda et al., 2000). However, taking mantle drag force into consideration, backarc extension or shortening possibly
occur independently of forearc shortening (Schellart and Moresi, 2013). Therefore, when
discussing stress in the island arc, it is necessary to consider the spatial change of stress.
Especially in the forearc region, spatial variations in stress may be more complicated.
Previous studies have proposed the following features producing strain and stress variations or discontinuities in the forearc region. One of the most significant and common
structures is the difference in physical properties. “Backstop” (Fig. 1), defined as a region
with increased yielding strength compared to the region trenchward, plays a fundamental role in the evolution of forearc geometry (Dahlen, 1990). The continental arc basement possibly acts as a kinematic discontinuity and is called a “static” backstop (Kopp and
Kukowski, 2003). A corresponding stress shadow occurs over the backstop, allowing a
forearc basin with no or minor deformation (Byrne et al., 1993; Tsuji et al., 2015). As the
accretionary wedge grows, differences in physical property occur between the trenchward
outer wedge, the actively deforming accretionary wedge, and the landward inner wedge,
slowly deforming material resulting from an earlier accretion (Kopp and Kukowski, 2003).
Such a relatively consolidated landward region performs as a “dynamic” backstop. For
example, an out-of-sequence thrust branching upward from the subduction fault (Park et
al., 2002) exists along the Nankai subduction zone where the Philippines Sea Plate is submerged beneath the southwest Japan arc. The thrust is located under the outer arc high
bounding inner and outer wedges and is regarded as the dynamic backstop. Besides, strikeslip faults parallel to the trench are known in the obliquely subducting margins (Martin et
al., 2010; Mosher et al., 2008). ...

参考文献

Abe, N., Sato, K., 2021. Regional and local paleostresses detected from orientations of

clastic dikes around mud diapirs in the Miocene Tanabe Group, southwest Japan. J.

Geol. Soc. Japan, 127, 709–725.

Asada, M., Moore, G. F., Kawamura, K., Noguchi, T., 2021. Mud volcano possibly linked

to seismogenic faults in the Kumano Basin, Nankai Trough, Japan. Mar. Geophys.

Res., 42, doi: 10.1007/s11001-020-09425-7.

Baer, G., Beyth, M., Reches, Z., 1994. Dikes emplaced into fractured basement, Timna

Igneous Complex, Israel. J. Geophys. Res., 99, 24039–24050.

Bal´azs, A., Faccenna, C., Gerya, T., Ueda, K., Funiciello, F., 2022. The dynamics of forearc

– back-arc basin subsidence: Numerical models and observations from Mediterranean

subduction zones. Tectonics, 41, doi: 10.1029/2021TC007078.

Bingham, C., 1974. An antipodally symmetric distribution on the sphere. Ann. Stat., 2,

1201–1225.

Blow, W. H., 1969. Late middle Eocene to recent planktonic foraminiferal biostratigraphy.

In Br¨onniman, P., Renz, H. H. eds., Proceedings of the First International Conference

on Planktonic Microfossils, Geneva, 1967, 1, 199–422.

Bott, M. H. P., 1959. The mechanics of oblique slip faulting. Geol. Mag., 96, 109–117.

Byrne, D. E., Wang, W.-H., Davis, D. M., 1993. Mechanical role of backstops in the growth

of forearcs. Tectonics, 12, 123–144.

Chemenda, A., Lallemand, S., Bokun, A., 2000. Strain partitioning and interplate friction in oblique subduction zones: Constraints provided by experimental modeling. J.

Geophys. Res., 105, 5567–5581.

Cho, H., Son, M., Sohn, Y. K., Park, M. E., 2017. Magnetic fabric (anisotropy of magnetic

susceptibility) constraints on emplacement mechanism of clastic dikes. J. Geophys.

Res., 122, 3306–3333.

49

Choi, P.-Y., Nakae, S., Kim, H., 2011. Fault tectonic analysis of Kii peninsula, Southwest Japan: Preliminary approach to Neogene paleostress sequence near the Nankai

subduction zone. Isl. Arc, 20, 455–476.

Dahlen, F. A., 1990. Critical taper model of fold-and-thrust belts and accretionary wedges.

Annu. Rev. Earth Planet. Sci., 18, 55–99.

Davies, R. J., Huuse, M., Hirst, P., Cartwright, J., Yang, Y., 2006. Giant clastic intrusions

primed by silica diagenesis. Geology, 34, 917–920.

Delaney, P. T., Pollard, D. D., Zioney, J. I., McKee, E. H., 1986. Field relations between

dykes and joints: Emplacement processes and paleostress analysis. J. Geophys. Res.,

91, 4920–4938.

Dominguez, S., Malavieille, J., Lallemand, S. E., 2000. Deformation of accretionary

wedges in response to seamount subduction: Insights from sandbox experiments. Tectonics, 19, 182–196.

Haji, T., Yamaji, A., 2020. Termination of intra-arc rifting at ca 16 Ma in the Southwest Japan arc: The tectonostratigraphy of the Hokutan Group. Isl. Arc, 29, doi:

10.1111/iar.12366.

Haji, T., Yamaji, A., 2021. Post-rift stress history of Southwest Japan inferred from early

to middle Miocene intrusions and meso-scale faults in the Tajima-Myokensan area.

Isl. Arc, 30, doi: 10.1111/iar.12412.

Haji, T., Yamaji, A., Iwano, H., Danhara, T., Hirata, T., 2022. Extensional stress accompanied by Miocene near-trench magmatism in the southern Kii Peninsula, SW Japan. J.

Asian Earth Sci., 235, doi: 10.1016/j.jseaes.2022.105266.

Haji, T., Yamaji, A., Niki, S., Hirata, T., 2019. Zircon U–Pb age of a lapilli tuff bed in

the lower Miocene Yoka Formation, northern Hyogo, SW Japan. J. Geol. Soc. Japan,

125, 867–875.

Harada, T., Nakaya, S., 1999. Hot springs. Urban Kubota, 38, 42–56.

50

Hayashida, A., 1994. Paleomagnetism of Miocene sedimentary rocks in the Kakegawa

area and implication for tectonic rotation in central japan. J. Geomag. Geoelectr., 46,

1051–1066.

Hayashida, A., Fukui, T., Torii, M., 1991. Paleomagnetism of the early Miocene Kani

Group in southwest Japan and its implication for the opening of the Japan Sea. Geophys. Res. Lett., 18, 1095–1098.

Hildebrandt, C., Egenhoff, S., 2007. Shallow-marine massive sandstone sheets as indicators of palaeoseismic liquefaction: An example from the Ordovician shelf of Central

Bolivia. Sediment. Geol., 202, 581–595.

Hiroki, Y., Matsumoto, R., 1999. Magnetostratigraphic correlation of Miocene regressionand-transgression boundaries in central Honshu, Japan. J. Geol. Soc. Japan, 105, 87–

107.

Hisatomi, K., 1981. Geology and sedimentolgy of the Kumano Group in the southeastern

part of the Kumano basin, Kii Peninsula. J. Geo. Soc. Japan, 87, 157–174.

Hoshi, H., 2018. Kanto Syntaxis: when did it begin to grow? J. Geol. Soc. Japan, 124,

805–817.

Hoshi, H., Iwano, H., Danhara, T., 2002. Fission-track dating of the Setouchi valcanic

rocks: An example from the Nijo Group, Kinki district, southwest Japan. J. Geol.

Soc. Japan, 108, 353–365.

Hoshi, H., Iwano, H., Danhara, T., Yoshida, T., 2003. Fission-track dating of the Shionomisaki Igneous Complex, Kii Peninsula, Japan. J. Geol. Soc. Japan, 109, 139–

150.

Hoshi, H., Kato, D., Ando, Y., Nakashima, K., 2015. Timing of clockwise rotation of

Southwest Japan: constraints from new middle Miocene paleomagnetic results. Earth

Planets Space, 67, doi: 10.1186/s40623-015-0266-3.

Hoshi, H., Takagawa, M., 2009. Early Miocene parallel dike swarms in the Tsuruga Bay

area, back-arc side of central Japan. J. Geol. Soc. Japan, 115, 96–99.

51

Houghton, B. F., Wilson, C. J. N., McWilliams, M. O., Lanphere, M. A., Weaver, S.

D., Briggs, R. M., Pringle, M. S., 1995. Chronology and dynamics of a large silicic

magmatic system: Central Taupo Volcanic Zone, New Zealand. Geology, 23, 13–16.

Resolution of the age structure of the detrital zircon populations of two Lower Creaceous

sandstones from the Weald of England by fission track dating. Geol. Mag., 121, 269–

277.

Ibaraki, M., 1986. Planktonic foraminiferal datum levels recognized in the Neogene sequence of the Kakegawa area, and their relationship with the lithostratigraphy. J. Geol.

Soc. Japan, 92, 119–134.

Iizuka, T. and Hirata, T., 2004. Simultaneous determinations of U–Pb age and REE abundances for zircons using ArF excimer laser ablation-ICPMS. Geochem. J., 38, 229–

241.

Ikebe, N., Chiji, M., Morozumi, Y., 1975. Lepidocyclina horizon in the Miocene Kumano

Group in reference to planktonic foraminiferal biostratigraphy. Bull. Osaka Mus. Nat.

Hist., 29, 81–89.

Ishihara Sangyo Kaisha, Ltd., 1984. Progress in exploration at the Kishu Mine. Mine Exploration in Japan (Nihon no Kosho Tansa), 2, 113–144.*

Ishiwatari, A., Ohama, H., 1997. Clinopyroxene basalt dikes in the Miocene Iwaine Formation, Hokuriku Province, Japan: Various continental arc magmas including shoshonite

series and origin of the clinopyroxene phenocrysts. J. Geol. Soc. Japan, 103, 565–578.

Iwano, H., Danhara, T., Hoshi, H., Kawakami, Y., Sumii, T., Shinjoe, H., Wada, Y., 2007.

Simultaneity and similarity of the Muro Pyroclastic Flow Deposit and the Kumano

Acidic Rocks in Kii Peninsula, southwest Japan, based on fission track ages and morphological characteristcs of zircon. J. Geol. Soc. Japan, 113, 326–339.

Iwano, H., Orihashi, Y., Hirata, T., Ogasawara, M., Danhara, T., Horie, K.,…Yamamoto,

K., 2013. An inter-laboratory evaluation of OD-3 zircon for use as a secondary U–Pb

dating standard. Isl. Arc, 22, 382–394.

52

Jackson, S. E., Pearson, N. J., Griffin, W. L., Belousova, E. A., 2004. The application of

laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon

geochronology. Chem. Geol., 211, 47–69.

Jochum, K. P., Pf¨ander, J., Woodhead, J. D., Willbold, M., Stoll, B., Herwig, K.,...

Hofmann, A. W., 2005. MPI-DING glasses: New geological reference materials for in situ Pb isotope analysis. Geochem. Geophys. Geosyst., 6, Q10008, doi:

10.1029/2005GC000995.

Kano, K., Tanaka, H., Yoshida, T., Matsui, N., 1993. Formation of the Akaishi Tectonic

Zone and its significance on the crustal reconstruction of the eastern part of Southwest

Japan Arc during the Miocene. Mem. Geol. Soc. Japan, 42, 203–223.

Kano, K., Muramatsu, T., Hirota, Y., 1986. Deformation style of the upper Cretaceous

Shimanto Supergroup in the southern Akaishi mountains, central Japan. Geosci. Rep.

Shizuoka Univ., 12, 89–114.

Kano, K., Yoshida, F., 1985. Geology of the Sakaiminato district. Quadrangle Series, scale

1:50,000, Geol. Surv. Japan, 57p.

Kimura, K., 1985. Stratigraphy and sedimentary facies of the Tertiary Shimizu and Misaki

Formations in the southwestern part of Shikoku. J. Geol. Soc. Japan, 91, 815–831.

Kimura, T., 1959. Shrap bent of the Median Tectonic Line and its relation to the Akaishi

Tectonic Line: tectonic significances yielded by lateral faults. J. Geol. Geogr., 30,

215–232.

Kimura, J., Stern, R. J., Yoshida, T., 205. Reinitiation of subduction and magmatic responses in SW Japan during Neogene time. Geol. Soc. Am. Bull., 117, 969–986.

Kinoshita, H., Yamaji, A., 2021. Arc-parallel extension in preparation of the rotation of

southwest Japan: Tectonostratigraphy and structures of the Lower Miocene Ichishi

Group. Isl. Arc, 30, doi: 10.1111/iar.12418.

Kishu Shimanto Research Group, 2011. Mud diapirs of the Miocene Kumano Group in the

Kii Peninsula, Southwest Japan, with spacial reference to their relation to the Mega

Splay Faults on the southern margin of the Miocene forearc basin: The study of the

53

Shimanto terrain in the Kii Peninsula, southwest Japan (Part 15). Earth Sci. (Chikyu

Kagaku), 65, 1–16.

Kitazato, H., 1980. Deep sea benthonic foraminiferal assemblage of the Setogawa Group.

In Taira, A., Tashiro, M., eds., Geology and oaleontology of the SHimanto Belt: Selected Papers in Honor of Prof. Jiro Katto, Rinyakosaikai Press, Kochi, 219–225.

Kobayashi, Y., 1979. Early and middle Miocene dike swarms and regional tectonic stress

field in the southwest Japan. Volcanol. Soc. Japan, 24, 203–212.

Kobayashi, H., Yamaji, A., Masuda, F., 2005. Miocene stratigraphy, sedimentary environments and tectonics in the Wajima area, Noto Peninsula, southern margin of the Japan

Sea. J. Geol. Soc. Japan, 111, 286–299.

Kopp, H., Kukowski, N., 2003. Backstop geometry and accretionary mechanics of the

Sunda margin. Tectonics, 22, doi: 10.1029/2002TC001420.

Kusuhashi, N., Yamaji, A., 2001. Miocene tectonics of SW Japan as inferred from the

Kuma Group, Shikoku. J. Geol. Soc. Japan, 107, 26–40.

Marshall, J. D., Pirrie, D., 2013. Carbonate concretions–explained. Geol. Today, 29, 53–62.

Martin, K. M., Gulick, S. P. S., Bangs, N. L. B., Moore, G. F., Ashi, J., Park, J.-O.,... Taira,

A., 2010. Possible strain partitioning structure between the Kumano fore-arc basin

and the slope of the Nankai Trough accretionary prism. Geochem. Geophys. Geosyst.,

11, doi: 10.1029/2009GC002668.

Matsuda, T., Sugiyama, Y., 2014. Geology of the Nanbu District, 10. Geological structures.

Quadrangle Series, 1:50,000, Geological Survey of Japan, AIST, 96–115.

McNamara, D. D., Behboudi, E., Wallace, L., Saffer, D., Cook, A. E., Fagereng, A.,...

Petronotis, K. E., 2021. Variable In Situ Stress Orientations Across the Northern Hikurangi Subduction Margin. Geophys. Res. Lett., 48, doi: 10.1029/2020gl091707.

Miura, D., 2005. Effects of changing stress states on the development of caldera-bounding

faults: Geological evidence from Kumano caldera, Japan. J. Volcanol. Geotherm. Res.,

144, 89–103.

54

Miyata, Y., Miyake, K., Tanaka, K., 2009. Mud diapirs and associated intrusion structures

in the Miocene Tanabe Group. J. Geol. Soc. Japan, 115, 470–482.

Mochizuki, K., Samejima, T., Takeuchi, M., Kato, Y., Tsuchi, R., 1956. Geology of

Shizuoka Prefecture and 1:200,000 scale geological map of Shizuoka Prefecture.

Shizuoka Prefecture, Shizuoka, 57p.

Mosher, D. C., Austin, J. A., Fisher, D., Gulick, S. P. S., 2008. Deformation of the northern

Sumatra accretionary prism from high-resolution seismic reflection profiles and ROV

observations. Mar. Geol., 252, 89–99.

Murakami, N., Imaoka, T., Uozumi, S., 1989. Ring complex of the Cape of Ashizuri, and

its mode of emplacement, Kochi Prefecture, Southwest Japan. Monogr. Assoc. Geol.

Collab. Japan, 36, 115–142.

Nakajima, T., 2018. Tectonics of sedimentary basins in and around Japan since the opening

of the Sea of Japan. J. Geol. Soc. Japan, 124, 693–722.

Nakajima, T., Yoshikawa, K., Okitsu, O., 2021. Geologic structures and basin formation

tectonics in and around Toyama Trough, the Sea of Japan. J. Geol. Soc. Japan, 127,

165–188.

Nakaya, S., Hamada, Y., 2009. Paleo-mud-volcanoes of the Lower Miocene Tanabe Group

on the southern Kii Peninsula, southwest Japan. J. Geogr., 118, 472–491.

Nakaya, S., Suzuki, H., Takesue, Y., 2012. Middle Miocene igneous rocks and hottemperature springs in the southern part of the Kii Peninsula, Southwest Japan.

Monogr., Assoc. Geol. Collab. Japan, 59, 249–261.

Nishimura, A., Miyake, Y., 1973. Occurence of Lepidocyclina and Miogypsina in the Kumano Group. In: Collection of Papers of Shimanto Geosyncline Symposium, 37–38.

Noda, A., 2016. Forearc basins: Types, geometries, and relationships to subduction zone

dynamics. Geol. Soc. Am. Bull., 128, 879–895.

Otofuji, Y., Hayashida, A., Torii, M., 1985. When was the Japan Sea opened?: Paleomagnetic evidence from Wouthwest Japan. In Nasu, N., Uyeda, S., Kobayashi, K.,

55

Kushiro, I., Kagami, H., eds., Formation of Active Ocean Margins, Terrapub, Tokyo,

551–566.

Otsubo, M., Shigematsu, N., Kitagawa, Y., Koizumi, N., 2009. Stress history in the forearc

region of the Nankai trough subduction zone: paleostress analysis based on faults in

core samples from the Kumano Ichiura and Kihoku Miyama sites, Kii Peninsula, SW

Japan. J. Geol. Soc. Japan, 115, 457–469.

Ozaki, M., 2009. Tectonic evolution during Eocene to Miocene. In Geological Society of

Japan, eds., Monogr. Geol. Japan, Vol. 5, Kinki, Asakura Publ., Tokyo, 43–61.

Park, J. O., Tsuru, T., Kodaira, S., Cummins, P. R., Kaneda, Y., 2002. Splay fault branching

along the Nankai subduction zone. Science, 297, 1157–1160.

Raffi, I., Wade, B. S., P¨alike, H., 2020. The Neogene Period. In Gradstein, F. M., Ogg,

J. G., Schmitz, M. D. and Ogg, G. M., eds., Geologic Time Scale 2020, Elsevier,

Amsterdam, 1141–1215.

Saito, T., 1960. Tertiary Stratigraphy of the Kakegawa District, Central Japan and its Planktonic Foraminifera. Contrib. Inst. Geol. Paleontol. Tohoku Univ., 51, 1–45.

Sato, K., 2006. Incorporation of incomplete fault-slip data into stress tensor inversion.

Tectonophysics, 421, 319–330.

Sato, D., Haji, T., 2021. Tectonic setting and formation of the Setouchi volcanic rocks in

the western Seto Inland Sea, Japan. Isl. Arc, 30, doi: 10.1111/iar.12405.

Sato, K., Shibata, K., Uchiumi, S., 1989. K–Ar ages and cooling history of the Kaikomagatake granitoid plutons, and their bearing on tectonic evolution of the Akaishi

Mountains, central Japan. J. Geol. Soc. Japan, 95, 33–44.

Sato, K., Yamaji, A., Tonai, S., 2013. Parametric and non-parametric statistical approaches

to the determination of paleostress from dilatant fractures: Application to an Early

Miocene dike swarm in central Japan. Tectonophysics, 588, 69–81.

Schellart, W. P., Moresi, L., 2013. A new driving mechanism for backarc extension and

backarc shorteing through slab sinnking induced toroidal and poloidal mantle flow:

56

Results from dynamic subduction models with an overriding plate. J. Geol. Res., 118,

3221–3248.

Shiba, M., Yokoyama, K., Ohashi, T., Morizumi, M., Maekawa, K., Kondo, T., Ogi,

N., 2020. Stratigraphy and sedimentary processes of the Miocene Kurami and Saigo

Groups, Shizuoka Prefecture, Japan. Earth Sci. (Chikyu Kagaku), 74, 137–155.

Shimizu, H., 1985. Pebbly mudstone diapirs of the Tanabe Group in the Kii Pninsula,

southwest Japan. J. Geol. Soc. Japan, 91, 691–697.

Shinjoe, H., Orihashi, Y., Anma, R., 2019. U–Pb ages of Miocene near-trench granitic

rocks of the Southwest Japan arc: implications for magmatism related to hot subduction. Geol. Mag., doi: 10.1017/s0016756819000785.

Shinjoe, H., Orihashi, Y., Sumii, T., 2010. U–Pb zircon ages of syenitic and granitic rocks

in the Ashizuri igneous complex, southwestern Shikoku: Constraint for the origin of

forearc alkaline magmatism. Geochem. J., 44, 275–283.

Shinjoe, H., Orihashi, Y., Sumii, T., 2017. U–Pb zircon ages of Miocene igneous rocks in

western Shikoku. 124th Annu. Meet. Geol. Soc. Japan, Abstr, 92.

Sugisaki, Y., Hoshi, H., 2017. Geological implications of a paleomagnetic direction obtained from a Miocene dike swarm in the Hida region, central Japan. J. Geol. Soc.

Japan, 123, 953–967.

Takada, A., 1988. Subvolcanic structure of the central dike swarm associated with the ring

complexes in the Shtara district, central Japan. Bull. Volcanol., 50, 106–118.

Takano, O., 2017. Intermittent formation, sedimentation and deformation history of Cenozoic forearc basins along the Northwestern Pacific Margins as an indicator of tectonic

scenarios. In Itoh, Y., Takano, O., Takashima, R., Nishi, H., Yoshida, T., eds., Dynamics of Arc Migration and Amalgamation-Architectural Examples from the NW Pacific

Margin, IntechOpen, London, 1–24.

Takeshita, T., 1993. Deformation of the forearc region and along the Median Tectonic Line

in southwest Japan during the opening of the Japan Sea: A preliminary report. Mem.

Geol. Soc. Japan, 42, 225–244.

57

Tanabe Research Group, 1984. Stratigraphy and geological structure of the Tanabe Group

in the Kii Peninsula, Southwest Japan. Earth Sci. (Chikyu Kagaku), 38, 249–263.

Tanabe Research Group, 1992. Sedimentary facies and stratigraphy of the Asso Formation:

Study on the Asso Formation, Tanabe Group (Part 1). Earth Sci. (Chikyu Kagaku), 46,

369–383.

Tanase, A., Umeda, K., Mizuochi, Y., Ninomiya, A., 2001. K–Ar age of andesite dike

swarm distributed in the east of Takayama City, Gifu Prefecture. 108th Annu. Meet.

Geol. Soc. Japan, Abstr, 225.

Tatsumi, Y., Ishikawa, N., Anno, K., Ishizaka, K., Itaya, T., 2001. Tectonic setting of

high-Mg andesite magmatism in the SW Japan arc: K–Ar chronology of the Setouchi

volcanic belt. Geophys. J. Int., 144, 625–631.

Tatsumi, Y., Tani, K., Sato, K., Danhara, T., Hyodo, H., Kawabata, H., Hanyu, T., Dunkley, D. J., 2010. Multi-chronology of volcanic rocks leading to reliable age estimates

of volcanic activity: an example from the Setouchi volcanic rocks on Shodo-Shima

Island, SW Japan. J. Geol. Soc. Japan, 116, 661–679.

Tonai, S., Sato, K., Ashi, J., 2011. Incremental fold test for paleostress analysis using the

Hough transform inverse method. J. Struct. Geol., 33, 1158–1168.

Tsuji, T., Ashi, J., Strasser, M., Kimura, G., 2015. Identification of the static backstop and

its influence on the evolution of the accretionary prism in the Nankai Trough. Earth

Planet. Sci. Lett., 431, 15–25.

Tsunakawa, H., Kobayashi, Y., Takada, A., 1983. K–Ar ages of dikes in Southwest Japan.

Geochem. J., 17, 265–268.

Umehara, N., Itaya, T., Yoshikura, S., 1991. K–Ar dating on felsic igneous rocks along the

Kamiyakawa-Ikegawa Tectonic Line. J. Mineral. Petrol. Econ. Geol., 86, 299–304.

Wadatsumi, K., Matsumoto, T., 1958. The stratigraphy of the Neogene formations in northern Tazima: Study of the Neogene in the north-western part of the Kinki District (Part

1). J. Geol. Soc. Japan, 64, 625–637.

58

Wade, B. S., Pearson, P. N., Berggren, W. A., P¨alike, H., 2011. Review and revision of

Cenozoic tropical planktonic foraminiferal biostratigraphy and calibration to the geomagnetic polarity and astronomical time scale. Earth Sci. Rev., 104, 111–142.

Wallace, R. E., 1951. Geometry of shearing stress and relation to faulting. J. Geol., 59,

118–130.

Wallace, L. M., Fagereng, Å., Ellis, S., 2012. Upper plate tectonic stress state may influence

interseismic coupling on subduction megathrusts. Geology, 40, 895–898.

Wang, K., Hu, Y., 2006. Accretionary prisms in subduction earthquake cycles: The theory

of dynamic Coulomb wedge. J. Geophys. Res., 111, doi: 10.1029/2005JB004094.

Wendt, I., Carl, C., 1985. U/Pb dating of discordant 0.1 Ma old secondary U minerals.

Earth Planet. Sci. Lett., 73, 278–284.

Wetherill, G. W., 1956. Discordant uranium–lead ages, I. Trans. Am. Geophys. Union, 37,

320–326.

Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W. L., Meier, M., Oberli, F.,... Spiegel, W.,

1995. Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and ree analyses. Geostand. Newsl., 19, 1–23.

Woodcock, N. H., Fischer, M., 1986. Strike-slip duplexes. J. Struct. Geol., 8, 725–735.

Yamada, T., Watanabe, T., Kawachi, Y., Yuasa, M., Sekine, M., Matsu’ura, K.,... Demachi,

M., 1983. Geology of the Shimanto Belt of the northern Akaishi mountains, central

Japan. Earth Sci. (Chikyu Kagaku), 37, 329–348.

Yamaji, A., Sato, K., 2006. Distances for the solutions of stress tensor inversion in relation

to misfit angles that accompany the solutions. Geophys. J. Int., 167, 933–942.

Yamaji, A., Sato, K., 2011. Clustering of fracture orientations using a mixed Bingham

distribution and its application to paleostress analysis from dike or vein orientations.

J. Struct. Geol., 33, 1148–1157.

Yamaji, A., Sato, K., 2019. Stress inversion meets plasticity theory: A review of the theories of fault-slip analysis from the perspective of the deviatoric stress-strain space. J.

Struct. Geol., 125, 296–310.

59

Yamaji, A., Sato, K., Tonai, S., 2010. Stochastic modeling for the stress inversion of

vein orientations: Paleostress analysis of Pliocene epithermal veins in southwestern

Kyushu, Japan. J. Struct. Geol., 32, 1137–1146.

Yamamoto, T., 1991. Late Cenozoic dyke swarms and tectonic stress field in Japan. Bull.

Geol. Surv. Japan, 42, 131–148.

Yamamoto, T., Hoshizumi, H., 1988. Stratigraphy of the Neogene system in the Tango

Peninsula, eastern part of the San-in district, Southwest Japan, and associated Middle

Miocene volcanism. J. Geol. Soc. Japan, 94, 769–781.

Yamanaka, K., 2016. The position of the triple junction indicated from paleostresses in the

Kii Peninsula. Research Report of Fukada Research Grant 2015, 31–35.*

Yamanaka, K., Yamaji, A., 2017. Paleostresses detected from mineral veins in the Miocene

Kumano Group, Kii peninsula, SW Japan. 124th Annu. Meet. Geol. Soc. Japan, Abstr,

499.

Yanagisawa, Y., 1999. Diatom biostratigraphy of the Miocene sequence in the Suzu area,

Noto Peninsula, Ishikawa Prefecture, central Japan. Bull. Geol. Surv. Japan, 50, 167–

213.

Yoshida, H., Ujihara, A., Minami, M., Asahara, Y., Katsuta, N., Yamamoto, K.,... Metcalfe,

R., 2015. Early post-mortem formation of carbonate concretions around tusk-shells

over week-month timescales. Sci. Rep., 5, doi: 10.1038/srep14123.

Yoshimura, T., Muramatsu, T., Shirasawa, T., Nishizaka, M., 1989. Fission track age of the

Setogawa and the Kurami Group. 96th Annu. Meet. Geol. Soc. Japan, Abstr, 195.

Zhang, J., Zhang, B., Zhao, H., 2016. Timing of amalgamation of the Alxa Block and the

North China Block: Constraints based on detrital zircon U–Pb ages and sedimentologic and structural evidence. Tectonophysics, 668–669, 65–81.

[URL1] Geological Survey of Japan, updated on 10th May, 2019, https://gbank.gsj.jp/seamless/.

* English translation from the original written in Japanese.

60

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る