リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Enhanced and Asymmetric Melting Beneath the Southern Mariana Back-Arc Spreading Center Under the Influence of Pacific Plate Subduction」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Enhanced and Asymmetric Melting Beneath the Southern Mariana Back-Arc Spreading Center Under the Influence of Pacific Plate Subduction

Matsuno, Tetsuo Seama, Nobukazu Shindo, P. Haruka Nogi, Yoshifumi Okino, Kyoko 神戸大学

2022.05.05

概要

The back-arc spreading at the southern Mariana is categorized as slow, but surface morphological and geophysical features of the spreading centers suggest that the spreading process is associated with enhanced melting in the upper mantle, due to water being derived from the subducted Pacific slab. A marine magnetotelluric experiment was performed along a transect across a segment at 13°N to reveal the key processes of melting, dehydration, and dynamics in the upper mantle, and their relationships to the surface characteristics. Our inversion model of electrical resistivity shows (a) a conductive body at 10–20 km depth beneath the spreading axis, and (b) another conductive area expanding asymmetrically under and around the conductive body. Away from the spreading center, there is (c) a resistive area thickening up to ∼40 km on the remnant arc side, and (d) another resistive area with a constant thickness of ∼150 km on the trench side. Implications of these model features are (a) a melt body beneath the spreading axis; (b) a hydrous mantle above the subducted slab and asymmetric passive decompression melting in the mantle wedge; (c) a residual mantle off from the spreading axis; and (d) a cold mantle wedge tip and the subducted Pacific mantle. The structure markedly contrasts with that in the central Mariana Trough at 18°N, suggesting that the horizontal distance between the location of the spreading center and the root of the buoyant upwelling above the subducted slab is a key parameter that controls the mantle dynamics beneath the back-arc spreading.

この論文で使われている画像

参考文献

721

Amante, C., and .B. W., Eakins (2009). ETOPO1 1 arc-minute global relief model:

722

procedures, data sources and analysis. In: NOAA Technical Memorandum NESDIS

723

NGDC-24, p. 19.

724

Asimow, P. D., and Langmuir, C. H. (2003). The importance of water to oceanic mantle

725

melting regimes. Nature, 421, 815-820. https://doi.org/10.1038/nature01429

726

Baba, K., and Seama, N. (2002). A new technique for the incorporation of seafloor

727

topography in electromagnetic modeling. Geophys. J. Int., 150, 392-402.

728

https://doi.org/10.1046/j.1365-246X.2002.01673.x

729

Baba, K., and A. D. Chave (2005), Correction of seafloor magnetotelluric data for

730

topographic effects during inversion, J. Geophys. Res., 110, B12105,

731

doi:10.1029/2004JB003463

24

732

Baba, K., Chave, A. D., Evans, R. L., Hirth, G., and Mackie, R. L. (2006). Mantle

733

dynamics beneath the East Pacific Rise at 17°S: Insights from the Mantle

734

Electromagnetic and Tomography (MELT) experiment. J. Geophys. Res., 111,

735

B02101. https://doi.org/10.1029/2004JB003598

736

Becker, N., Fryer, C., P., and Moore, G. F. (2010). Malaguan-Gadao Ridge: Identification

737

and implications of a magma chamber reflector in the southern Mariana Trough.

738

Geochem.

739

https://doi.org/10.1029/2009GC002719

740

741

Geophys.

11,

Geosyst.,

Q04X13.

Bird, P. (2003). An updated digital model of plate boundaries. Geochem. Geophys.

Geosyst., 4(3), 1027. https://doi.org/10.1029/2001GC000252

742

Brounce, M., Kelley, K. A., Stern, R., Martinez, F., and Cottrell, E. (2016). The Fina Nagu

743

volcanic complex: Unusual submarine arc volcanism in the rapidly deforming

744

southern Mariana margin. Geochem. Geophys. Geosyst., 17, 4078-4091.

745

https://doi.org/10.1002/2016GC006457

746

Cagnioncle, A.-M., Parmentier, E. M., and Elkins-Tanton, L. T. (2007). Effect of solid

747

flow above a subducting slab on water distribution and melting at convergent plate

748

boundaries. J. Geophys. Res., 112, B09402. https://doi.org/10.1029/2007JB004934

749

Chave, A. D., and Thomson, D. J. (2004). Bounded influence estimation of

750

magnetotelluric

751

https://doi.org/10.1111/j.1365-246X.2004.02203.x

response

functions.

Geophys.

J.

Int.,

157,

988–1006.

752

Conder, J. A. (2007). Temperature structure of the Mariana system from geodynamical

753

modeling. Joint NSF-MARGINS and IFREE Workshop: Subduction Factory

754

Studies in the Izu-Bonin-Mariana Arc System: Results and Future Plans, Honolulu,

755

Hawaii, (Available at http://www.nsf-margins.org/IBM07/index.html).

756

Conder, J. A., Wiens, D. A., and Morris, J. (2002). On the decompression melting

757

structure at volcanic arcs and back-arc spreading centers. Geophys. Res.

758

Lett., 29(15), https://doi.org/10.1029/2002GL015390

759

Constable, S., Shankland, T. J., and Duba, A. (1992). The electrical conductivity of an

760

isotropic

761

https://doi.org/10.1029/91JB02453

762

763

olivine

mantle. J.

Geophys.

Res., 97(B3), 3397-3404.

Constable, S. (2006). SEO3: A new model of olivine electrical conductivity. Geophys. J.

Int., 166, 435-437. https://doi.org/10.1111/j.1365-246X.2006.03041.x

25

764

Dalton, C. A, Langmuir, C. H., Gale, A. (2014). Geophysical and geochemical evidence

765

for deep temperature variations beneath mid-ocean ridges. Science, 344(6179), 80-

766

83. https://doi.org/10.1126/science.1249466

767

Dasgupta, R., and Hirschmann, M. M. (2010). The deep carbon cycle and melting in

768

Earth's

769

https://doi.org/10.1016/j.epsl.2010.06.039

770

interior.

Earth

Planet.

Lett.,

298(1-2),

1-13.

Dunn, R. A., and Martinez, F. (2011). Contrasting crustal production and rapid mantle

771

transitions

772

https://doi.org/10.1038/nature09690

773

Sci.

beneath

back-arc

ridges.

469, 198-202.

Nature,

England, P. C., and Katz, R. F. (2010). Melting above the anhydrous solidus controls the

774

location

775

https://doi.org/10.1038/nature09417

of

volcanic

arcs.

467, 700-703.

Nature,

776

Evans, R. L., Hirth, G., Baba, K., Forsyth, D., Chave, A., and Mackie, R. (2005).

777

Geophysical evidence from the MELT area for compositional controls on oceanic

778

plates. Nature, 437, 249-252. https://doi.org/10.1038/nature04014

779

Evans, R. L., Wannamaker, P. E., McGary, R. S., Elsenbeck, J. (2013). Electrical structure

780

of the central Cascadia subduction zone: The EMSLAB Lincoln Line revisited.

781

Earth Planet. Sci. Lett., 402, 265-274. https://doi.org/10.1016/j.epsl.2013.04.021

782

Forsyth, D. W. (1992). Geophysical constraints on mantle flow and melt generation

783

beneath mid-ocean ridges. In J. P. Morgan, D. K. Blackman, J. M. Sinton

784

(Eds.), Mantle flow and melt generation at mid-ocean ridges, Geophysical

785

Monograph Series (Vol. 71, pp. 183-280).

786

Geophysical Union. Htttps://doi.org/10.1029/GM071p0001

787

Washington, DC: American

Gardés, E., Gaillard, F., and Tarits, P. (2014), Toward a unified hydrous olivine electrical

788

conductivity

789

https://doi.org/10.1002/2014GC005496

law.

Geochem.

Geophys.

Geosyst.,

15,

4984-5000.

790

Gerya, T. V., and Yuen, D. A. (2003). Rayleigh-Taylor instabilities from hydration and

791

melting propel ‘cold plumes’ at subduction zones. Earth Planet. Sci. Lett., 212, 47-

792

62. https://doi.org/10.1016/S0012-821X(03)00265-6

793

Grove, T. L., Till, C. B., Lev, E., Chatterjee, N., and Médard, E. (2009). Kinematic

794

variables and water transport control the formation and location of arc volcanoes.

795

Nature, 459, 694-697. https://doi.org/10.1038/nature08044

26

796

Guo, X., Yoshino, T., and Katayama, I. (2011). Electrical conductivity anisotropy of

797

deformed talc rocks and serpentinites at 3 GPa. Phys. Earth Planet. Inter., 188, 69-

798

81. https://doi.org/10.1016/j.pepi.2011.06.012

799

Hayes, G. P., Wald, D. J., and Johnson, R. L. (2012). Slab1.0: A three-dimensional model

800

of global subduction zone geometries. J. Geophys. Res., 117, B01302.

801

https://doi.org/10.1029/2011JB008524

802

Hacker, B. R., Abers, G. A., and Peacock, S. M. (2003). Subduction factory, 1, Theoretical

803

mineralogy, densities, seismic wave speeds, and H2O contents. J. Geophys. Res.,

804

108(B1), 2029. https://doi.org/10.1029/2001JB001127

805

Hall, P. S., and Kincaid, C. (2001). Diapiric flow at subduction zones: A recipe for rapid

806

transport. Science, 292(5526), 2472-2475. https://doi.org/10.1126/science.1060488

807

Harmon, N., and Blackman, D. K. (2010). Effects of plate boundary geometry and

808

kinematics on mantle melting beneath the back-arc spreading centers along the Lau

809

Basin.

810

https://doi.org/10.1016/j.epsl.2010.08.004

Earth

Planet.

Sci.

Lett.,

298,

334-346.

811

Hashin, Z., and Shtrikman, S. (1962). A variational approach to the theory of the effective

812

magnetic permeability of multiphase materials, J. Appl. Phys., 33, 3125-3131.

813

https://doi.org/10.1063/1.1728579

814

Hirschmann, M. M., Aubaud, C., and Withers, A. C. (2005). Storage capacity of H2O in

815

nominally anhydrous minerals in the upper mantle. Earth Planet. Sci. Lett., 236,

816

167-181. https://doi.org/10.1016/j.epsl.2005.04.022

817

Hyndman, R. D., and Peacock, S. M. (2003). Serpentinization of the forearc mantle. Earth

818

Planet. Sci. Lett., 212, 417-432. https://doi.org/10.1016/S0012-821X(03)00263-2.

819

Ikemoto, A., and H. Iwamori (2014). Numerical modeling of trace element transportation

820

in subduction zones: implications for geofluid processes. Earth Planets Space,

821

66:26, https://doi.org/10.1186/1880-5981-66-26

822

Ito, G., Lin, J., and Graham, D. (2003). Observational and theoretical studies of the

823

dynamics of mantle plume–mid-ocean ridge interaction. Rev. Geophys., 41, 4, 1017,

824

https://doi:10.1029/2002RG000117

825

Kato, T., Beavan, J., Matsushima, T., Kotake, Y., Camacho, J. T., and Nakao, S. (2003).

826

Geodetic evidence of back-arc spreading in the Mariana Trough. Geophys. Res.

827

Lett., 30(12), 1625. https://doi.org/10.1029/2002GL016757

27

828

Kawamoto, T., Kanzaki, M., Mibe, K., Matsukage, K. N., and Ono, S. (2012). Separation

829

of supercritical slab-fluids to form aqueous fluid and melt components in

830

subduction zone magmatism. Proc Natl Acad Sci USA., 109(46), 18695-18700.

831

https://doi.org/10.1073/pnas.1207687109

832

Key, K., Constable, S. Liu, L., and Pommier, A. (2013), Electrical image of passive

833

mantle upwelling beneath the northern East Pacific Rise, Nature, 495, 499-502.

834

https://doi.org/0.1038/nature11932

835

Kelley, K. A., Plank, T., Grove, T. L., Stolper, E. M., Newman, S., and Hauri, E. (2006).

836

Mantle melting as a function of water content beneath back-arc basins. J. Geophys.

837

Res., 111, B09208. https://doi.org/10.1029/2005JB003732

838

Kelley, K. A., Plank, T., Newman, S., Stolper, E. M., Grove, T. L., Parman, S., Hauri, E.

839

H. (2010). Mantle melting as a function of water content beneath the Mariana Arc, J.

840

Petrol., 51(8), 1711-1738. https://doi.org/10.1093/petrology/egq036

841

Kimura, J.-I., and Nakajima, J. (2014). Behaviour of subducted water and its role in

842

magma genesis in the NE Japan arc: A combined geophysical and geochemical

843

approach.

844

https://doi.org/10.1016/j.gca.2014.04.019

Geochim.

Cosmochim.

Acta,

143,

165-188.

845

Kitada, K., Seama, N., Yamazaki, T., Nogi, Y., and Suyehiro, K. (2006). Distinct regional

846

differences in crustal thickness along the axis of the Mariana Trough, inferred from

847

gravity

848

https://doi.org/10.1029/2005GC001119

anomalies.

Geochem.

Geophys.

Geosyst.,

7,

Q04011.

849

Ledo, J., Gueralt, P., Marti, A., and Jones, A. G. (2002). Two-dimensional interpretation

850

of three-dimensional magnetotelluric data: an example of limitations and resolution.

851

Geophys. J. Int., 150, 127-139. https://doi.org/10.1046/j.1365-246X.2002.01705.x

852

Lin, J., and Morgan, J. P. (1992). The spreading rate dependence of three-dimensional

853

mid-ocean

854

https://doi.org/10.1029/91GL03041

ridge

gravity

structure,

Geophys.

Res.

Lett., 19(1),

13-16.

855

Liu, C.-Z., Snow, J. E., Hellebrand, E., Brügmann, G., von der Handt, A., Büchl, A. and

856

Hofmann, A. W. (2008). Ancient, highly heterogeneous mantle beneath Gakkel

857

ridge, Arctic Ocean, Nature, 452, 311-316. https://doi.org/10.1038/nature06688

858

Macdonald, K. C., Scheirer, D. S., and Carbotte, S. M. (1991). Mid-ocean ridges:

859

Discontinuities, segments and giant cracks, Science, 253(5023), 986-994.

28

860

https://doi.org/10.1126/science.253.5023.986

861

Macpherson, C. G., Hilton, D. R., and Hammerschmidt, K. (2010). No slab-derived

862

CO2 in Mariana Trough back-arc basalts: Implications for carbon subduction and

863

for temporary storage of CO2 beneath slow spreading ridges. Geochem. Geophys.

864

Geosyst., 11, Q11007. https://doi.org/10.1029/2010GC003293

865

Manthilake, G., Bolfan-Casanova, N., Novella, D., Mookherjee, M., and Andrault, D.

866

(2016). Dehydration of chlorite explains anomalously high electrical conductivity

867

in

868

https://doi.org/10.1126/sciadv.1501631

the

mantle

wedges.

Advances, 2(5),

Science

e1501631.

869

Martínez, F., Fryer, P., and Becker, N. (2000). Geophysical characteristics of the

870

southern Mariana Trough, 11°50′N-13°40′N. J. Geophys. Res., 105(B7), 16591-

871

16607. https://doi.org/10.1029/2000JB900117

872

873

Martinez, F., and Taylor, B. (2002). Mantle wedge control on back-arc crustal accretion,

Nature, 416, 417-420. https://doi.org/10.1038/416417a

874

Masuda, H., and Fryer, P. (2015). Geochemical characteristics of active backarc basin

875

volcanism at the southern end of the Mariana Trough. In J. Ishibashi et al. (Eds.),

876

Subseafloor Biosphere Linked to Global Hydrothermal Systems; TAIGA Concept

877

(pp. 241-251). Tokyo: Springer Japan. https://doi.org/10.1007/978-4-431-54865-

878

2_21

879

Matsuno, T., Seama, N., and Baba, K. (2007). A study on correction equations for the

880

effect of seafloor topography on ocean bottom magnetotelluric data. Earth Planets

881

Space, 59, 981-986. https://doi.org/10.1016/j.pepi.2007.02.014

882

Matsuno, T., Seama, N., Evans, R. L., Chave, A. D., Baba, K., White, A., Goto, T.,

883

Heinson, G., Boren, G., Yoneda, A., and Utada, H. (2010). Upper mantle electrical

884

resistivity structure beneath the central Mariana subduction system. Geochem.

885

Geophys. Geosyst., 11, Q09003. https://doi.org/10.1029/2010GC003101

886

Matsuno, T., Evans, R. L., Seama, N., and Chave, A. D. (2012). Electromagnetic

887

constraints on a melt region beneath the central Mariana back-arc spreading ridge.

888

Geochem. Geophys. Geosyst., 13, Q10017. https://doi.org/10.1029/2012GC004326

889

Matsuno, T., Chave, A. D., Jones, A. G., Muller, M. R., and Evans, R. L. (2014). Robust

890

magnetotelluric

891

https://doi.org/10.1093/gji/ggt484

inversion.

Geophys.

29

J.

Int.,

196,

1365-1374.

892

McGary, R. S., Evans, R. L., Wannamaker, P. E., Elsenbeck, J., and Rondenay, S. (2014).

893

Pathway from subducting slab to surface for melt and fluids beneath Mount Rainier.

894

Nature, 511, 338-340. https://doi.org/10.1038/nature13493

895

Miller, M. S., Kennett, B. L. N., and Toy, V. G. (2006). Spatial and temporal evolution of

896

the subducting Pacific plate structure along the western Pacific margin. J. Geophys.

897

Res., 111, B02401. https://doi.org/10.1029/2005JB003705

898

Müller, R. D., M. Sdrolias, C. Gaina, and W. R. Roest (2008), Age, spreading rates, and

899

spreading asymmetry of the world’s ocean crust, Geochem. Geophys. Geosyst., 9,

900

Q04006. doi:10.1029/2007GC001743

901

Newman, S., Stolper, E., and Stern, R. (2000). H2O and CO2 in magmas from the Mariana

902

arc and back arc systems. Geochem. Geophys. Geosyst., 1(5), 1013.

903

https://doi.org/10.1029/1999GC000027

904

Nielsen, S. G., and Marschall, H. R. (2017). Geochemical evidence for mélange melting

905

in

906

https://doi.org/10.1126/sciadv.1602402

907

908

global

arcs.

Science

3(4),

Advances,

e1602402.

Nolasco, R., Tarits, P., Filloux, J. H., and Chave, A. D. (1998). Magnetotelluric imaging

of the Society Islands hotspot. J. Geophys. Res., 103(B12), 30287-30309

909

Pearce J. A., Stern, R. J., Bloomer, S. H., and Fryer, P. (2005). Geochemical mapping of

910

the Mariana arc-basin system: Implications for the nature and distribution of

911

subduction

912

https://doi.org/10.1029/2004GC000895

913

components.

Geochem.

Geophys.

Geosyst.,

6,

Q07006.

Pommier, A., Gaillard, F., Pichavant, M., and Scaillet, B. (2008). Laboratory

914

measurements of electrical conductivities of hydrous and dry Mount Vesuvius

915

melts under pressure. J. Geophys. Res., 113, B05205.

916

https://doi.org/10.1029/2007JB005269

917

Reynard, B., Mibe, K., and Van de Moortèleet, B. (2011). Electrical conductivity of the

918

serpentinised mantle and fluid flow in subduction zones. Earth Planet. Sci. Lett.,

919

307, 387-394. https://doi.org/10.1016/j.epsl.2011.05.013

920

Ribeiro, J. M., Stern, R. J., Kelley, K. A., Martinez, F., Ishizuka, O., Manton, W. I., and

921

Ohara, Y. (2013). Nature and distribution of slab-derived fluids and mantle sources

922

beneath the Southeast Mariana forearc rift. Geochem. Geophys. Geosyst., 14.

923

https://doiorg/10.1002/ggge.20244

30

924

Rodi, W., and Mackie, R. L. (2001). Nonlinear conjugate gradients algorithm for 2-D

925

magnetotelluric

926

https://doi.org/10.1190/1.1444893

inversion.

Geophysics,

66,

174-187.

927

Sato, T., Mizuno, M., Takata, H., Yamada, T., Isse, T., Mochizuki, K., Shinohara, M., and

928

Seama, N. (2015). Seismic structure and seismicity in the southern Mariana Trough

929

and their relation to hydrothermal activity. In J. Ishibashi et al. (Eds.), Subseafloor

930

Biosphere Linked to Global Hydrothermal Systems; TAIGA Concept (pp. 241-251).

931

Tokyo: Springer Japan. https://doi.org/10.1007/978-4-431-54865-2_18

932

Schmidt, M. W., and Poli, S. (1998). Experimentally based water budgets for dehydrating

933

slabs and consequences for arc magma generation. Earth Planet. Sci. Lett., 163,

934

361-379. https://doi.org/10.1016/S0012-821X(98)00142-3

935

936

Sdrolias, M., and Müller, R. D. (2006). Controls on back-arc basin formation, Geochem.

Geophys. Geosyst., 7, Q04016. https://doi.org/10.1029/2005GC001090

937

Seama, N., and Okino, K. (2015). Asymmetric seafloor spreading of the southern Mariana

938

Trough back-arc basin. In J. Ishibashi et al. (Eds.), Subseafloor Biosphere Linked

939

to Global Hydrothermal Systems; TAIGA Concept (pp. 241-251). Tokyo: Springer

940

Japan. https://doi.org/10.1007/978-4-431-54865-2_20

941

Seama, N., Sato, H., Nogi, Y., and Okino, K. (2015). The mantle dynamics, the crustal

942

formation, and the hydrothermal activity of the southern Mariana Trough back-arc

943

basin. In J. Ishibashi et al. (Eds.), Subseafloor Biosphere Linked to Global

944

Hydrothermal Systems; TAIGA Concept (pp. 241-251). Tokyo: Springer Japan.

945

https://doi.org/10.1007/978-4-431-54865-2_17

946

Shimizu, H., Yoneda, A., Baba, K., Utada, H., and Palshin, N. A. (2011). Sq effect on the

947

electromagnetic response functions in the period range between 104 and 105 s.

948

Geophys.

949

246X.2011.05036.x

J.

Int.,

186(1),

193-206.

https://doi.org/10.1111/j.1365-

950

Sifré, D., Gardés, E., Massuyeau, M., Hashim, L., Hier-Majumder, S., and Gaillard, F.

951

(2014). Electrical conductivity during incipient melting in the oceanic low-velocity

952

zone. Nature, 509, 81-85. https://doi.org/10.1038/nature13245

953

Stern, R. J., Tamura, Y., Masuda, H., Fryer, P., Martinez, F., Ishizuka, O. and Bloomer, S.

954

H. (2013). How the Mariana Volcanic Arc ends in the south. Island Arc, 22, 133-

955

148. https://doi.org/10.1111/iar.12008

31

956

957

958

959

Tatsumi, Y. (1986). Formation of the volcanic front in subduction zones. Geophys. Res.

Lett., 13(8), 717-720. https://doi.org/ 10.1029/GL013i008p00717

Taylor, B., Martinez, F. (2003). Back-arc basin basalt systematics, Earth Planet. Sci. Lett.,

210, 481-497. https://doi.org/10.1016/S0012-821X(03)00167-5

960

Thebault, E. et al. (2015). International Geomagnetic Reference Field: the 12th

961

generation. Earth Planets Space, 67:79. https://doi.org/10.1186/s40623-015-0228-

962

963

Tyburczy, J. A., and Waff, H. S. (1983). Electrical conductivity of molten basalt and

964

andesite to 25 kilobars pressure: Geophysical significance and implications for

965

charge transport and melt structure, J. Geophys. Res., 88(B3), 2413-2430.

966

https://doi.org/10.1029/JB088iB03p02413

967

Turner, A. J., Katz, R. F., and Behn, M. D. (2015). Grain-size dynamics beneath mid-

968

ocean ridges: Implications for permeability and melt extraction, Geochem. Geophys.

969

Geosyst., 16, 925-946. https://doi.org/10.1002/2014GC005692

970

Usui, Y. (2015). 3-D inversion of magnetotelluric data using unstructured tetrahedral

971

elements: applicability to data affected by topography. Geophys. J. Int., 202(2):

972

828-849. https://doi.org/10.1093/gji/ggv186

973

Usui, Y., T. Kasaya, Y. Ogawa, and H. Iwamoto (2018). Marine magnetotelluric inversion

974

with an unstructured tetrahedral mesh. Geophys. J. Int., 214(2): 952-

975

974. https://doi.org/10.1093/gji/ggy171

976

van Keken, P. E., Hacker, B. R., Syracuse, E. M., and Abers, G. A. (2011). Subduction

977

factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide. J.

978

Geophys. Res., 116, B01401. https://doi.org/10.1029/2010JB007922

979

Wada, I., and Wang, K. (2009). Common depth of slab-mantle decoupling: Reconciling

980

diversity and uniformity of subduction zones. Geochem. Geophys. Geosyst., 10,

981

Q10009. https://doi.org/10.1029/2009GC002570

982

Wada, I., and Behn, M. D. (2015). Focusing of upward fluid migration beneath volcanic

983

arcs: Effect of mineral grain size variation in the mantle wedge. Geochem. Geophys.

984

Geosyst., 16, 3905-3923. https://doi.org/10.1002/2015GC005950

985

Wallace, L. M., R. McCaffrey, J. Beavan, and S. Ellis (2005). Rapid microplate rotations

986

and back-arc rifting at the transition between collision and subduction, Geology, 33,

987

857-860. doi:10.1130/G21834.1

32

988

Wallace, L. M., S. Ellis, and P. Mann (2009). Collisional model for rapid fore-arc block

989

rotations, arc curvature, and episodic back-arc rifting in subduction settings,

990

Geochem. Geophys. Geosyst., 10, Q05001. doi:10.1029/2008GC002220

991

Wang, D., Mookherjee, M., Xu, Y., and Karato, S. (2006). The effect of water on the

992

electrical

993

https://doi.org/10.1038/nature05256

994

995

conductivity

of

olivine.

Nature,

443,

977-980.

Wannamaker, P. E., Hohmann, G. W., and Ward, S. H. (1984). Magnetotelluric responses

of three-dimensional bodies in layered earths. Geophysics, 49, 1517-1533

996

Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J., and Wobbe, F. (2013). Generic Mapping

997

Tools: Improved version released. Eos, trans. AGU, 94(45), 409-420.

998

https://doi.org/10.1002/2013EO450001

999

Wiens, D. A., Kelley, K. A., and Plank, T. (2006). Mantle temperature variations beneath

1000

back-arc spreading center inferred from seismology, petrology, and bathymetry.

1001

Earth Planet. Sci. Lett., 248, 30-42. https://doi.org/10.1016/j.epsl.2006.04.011

1002

Wilson, C. R., Spiegelman, M., van Keken, P. E., and Hacker, B. R. (2014). Fluid flow in

1003

subduction zones: The role of solid rheology and compaction pressure. Earth Planet.

1004

Sci. Lett., 401, 261-274. https://doi.org/10.1016/j.epsl.2014.05.052

1005

Yoshino, T., Matsuzaki, T., Shatskiy, A., and Katsura, T. (2009), The effect of water on

1006

the electrical conductivity of olivine aggregates and its implications for the

1007

electrical structure of the upper mantle. Earth Planet. Sci. Lett., 288, 291-300.

1008

https://doi.org/10.1016/j.epsl.2009.09.032

33

1009

Table

1010

Station

Latitude

Longitude

Water

E-field

Remote B-

ID

(N)

(E)

Depth [m]

EM1

13°19.25’

143°02.80’

3924

Available

EM6

EM2

13°10.92’

143°15.09’

3749

Available

EM10

EM3

13°06.69’

143°21.56’

3567

Available

EM7

EM4

13°02.37’

143°28.05’

3255

EM5

12°58.00’

143°34.53’

3086

EM8

N/A

EM6

12°56.74’

143°36.41’

2868

Available

EM5

EM7

12°55.43’

143°38.18’

3123

Available

EM5

EM8

12°53.47’

143°41.21’

3316

Available

EM5

EM9

12°49.13’

143°47.57’

2569

++

++

EM10

12°45.09’

143°53.96’

3685

Available

N/A

EM11

12°40.82’

144°00.47’

3751

EM10

EM6

field

1011

1012

Table 1

1013

Station information. Station ID is numbered from the northwesternmost station to the

1014

southeasternmost one; see also Figure 1. Latitude and longitude is the location of the ship

1015

at the time of deployment of the instrument, and water depth is derived from the multi-

1016

narrow beam bathymetric data (Kitada et al., 2006). The symbol “+” for EM4 means that

1017

EM field data were obtained by the experiment, but the MT response estimated from the

1018

data had a low squared coherency between the electric field observed and that predicted

1019

from the MT response estimated and the magnetic field observed, and were not used in

1020

the inversion. The symbol “++” for EM9 means that this instrument has not yet been

1021

recovered.

34

1022

Figures

1023

1024

1025

Figure 1

1026

(a) Bathymetric map, which derives from multi-narrow beam data (Kitada et al., 2006)

1027

and the ETOPO1 data (Amante and Eakins, 2009), with depth contours of the surface of

1028

the subducted Pacific slab (colored dotted lines; Hayes et al., 2012) and the location of

1029

the Mariana Trench (light green dotted line; Bird, 2003), as well as ridge centers of the

1030

back-arc spreading in the Mariana Trough (black dash-dotted line; Kitada et al., 2006).

1031

The white box represents the range of the map in Figure 1b, and the range of this map is

1032

shown by the black rectangle in the right-top inset showing the plate boundaries (Bird,

1033

2003). White dots at around 18°N indicate MT stations used for obtaining an electrical

1034

resistivity structure in the central Marianas (Matsuno et al., 2010).

1035

(b) Bathymetric map with marine MT observational stations (symbols). Circles and

1036

crosses indicate locations of magnetic field data and electric field data, respectively. The

1037

colors red, black, and gray for the symbols indicate stations from which the data were

1038

used in the inversion, stations from which data were obtained but not used in inversion,

35

1039

and stations at which the instrument was not recovered, respectively. The station names

1040

are numbered from northwest to southeast (the northwesternmost station is called EM1,

1041

and the southeasternmost one is called EM11); see also Table 1. The abbreviations in this

1042

map are as follows: MGR: Malaguana-Gadau Ridge, PMVC: Patgon-Masala Volcanic

1043

Chain, FNVC: Fina Nagu Volcanic Chain, ASVP: Alphabet Seamount Volcano Province,

1044

WSRBF: West Santa Rosa Bank Fault, SEMFR: Southeast Mariana Forearc Rift (Stern

1045

et al., 2013; Masuda and Fryer, 2015).

36

1046

1047

Figure 2

1048

Apparent resistivities for all four elements and all stations before and after the correction

1049

of topographic distortions (black circle and red diamond, respectively). Error bars show

1050

one standard error of the observations. An annotation for the vertical axis is shown only

1051

in the upper-left-most panel but is common to all the other panels. The station names are

1052

shown in the upper-left corner in the leftmost panels.

37

1053

1054

Figure 3

1055

Phase values for all four elements and all stations before and after the correction of

1056

topographic distortions. The symbols and the error bars are the same as in Figure 2. Note

1057

that ranges of the phase values for off-diagonal elements and diagonal elements are

1058

different. Annotations for the vertical axis are shown only in the top panels but are

1059

common to each MT impedance element panel. The station names are shown in the upper-

1060

left corner in the leftmost panels.

38

1061

1062

Figure 4

1063

(a) RMS misfits and model roughness values for 2-D electrical resistivity models in the

1064

robust inversion processing. The model constraint in the inversion is only model

1065

smoothness. The robust inversion processing was applied two times, and the resulting

1066

values are shown by triangles, squares, and circles for the 0th, 1st, and 2nd robust inversion

1067

runs. At each run, 9 values for the regularization parameter of model smoothness (τs) were

1068

used: 300, 100, 30, 10, 3, 1, 0.3, 0.1, and 0.03. The optimal value of the regularization

1069

parameter is 0.3 for all robust runs, as shown by the filled symbols.

1070

(b) Quantile-quantile plot with 95% confidence limits for the results of the final inversion

1071

(the 2nd run).

39

1072

1073

Figure 5

1074

Optimal 2-D electrical resistivity inversion models (a) with constraints on only model

1075

smoothness and (b) with constraints on model smoothness and allowance for resistivity

1076

jumps surrounding the subducted Pacific slab. The tip of the subducted slab, which was

1077

taken into account for the resistivity jump in Figure 5b, terminates at 200 km depth.

1078

Stations are represented by inverted triangles with numbers near the top of each figure.

1079

Note that the seafloor spreading center is located at 0 km distance, and that the station

1080

located at the spreading center is EM6.

40

1081

1082

Figure 6

1083

TM mode MT responses observed (circles, with error bar representing one standard error)

1084

and predicted from two types of electrical resistivity inversion models (red and blue lines,

1085

which correspond to the Figure 5a model and Figure 5b model, respectively). The two

1086

lines are almost consistent. The station names are shown in the upper-left corner in each

1087

panel. The filled squares seen only in the EM10 response represent outliers that were

1088

excluded from the data set by the robust inversion processing. RMS misfits for each site

1089

and those for each period are tabulated in Tables S1 and S2, respectively, in the supporting

1090

information.

41

1091

1092

Figure 7

1093

Electrical resistivity as a function of temperature, component, and the amount of melt

1094

interconnected in solid phase and water (or hydrogen) dissolved in solid phase or melt.

1095

Comparing this figure and the inversion model (Figure 5) with an assumption for

1096

temperature of a focusing area, the amount of melt and water (or hydrogen) can be

1097

estimated. See details in text.

1098

(a) Electrical resistivity for several types of minerals and materials as a function of

1099

temperature, overlying the resistivity color scale used for drawing the inversion models

1100

in Figure 5. Black solid lines indicate dry olivine (1a: Yoshino et al., 2009; 1b: Gardés et

1101

al., 2014; 1c: Constable et al., 1992; 1d: Constable , 2006). Blue lines indicate wet olivine

1102

(2a and 2a’: Yoshino et al., 2009 for 0.01 wt.% and 0.1 wt.% water, respectively; 2b, 2b’’,

1103

and 2b’: Gardés et al., 2014 for 0.01 wt.%, 0.03 wt.%, and 0.1 wt.% water, respectively;

1104

2c and 2c’: Wang et al., 2006 for 0.01 wt.% and 0.1 wt.% water, respectively). Red line

1105

indicates basaltic melt (3) (Tyburczy and Waff, 1983 for tholeiite melt at 4.3 kbar). Purple

1106

line indicates hydrous basaltic melt with 1 wt.% water (4) (Sifré et al., 2014). For clarity,

1107

the hydrous melt line, 4, is cut at cross-point by the dry silicate melt line, ...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る