リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Planetesimal Accretion under a Realistic Accretion Condition」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Planetesimal Accretion under a Realistic Accretion Condition

柴田, 雄 東京大学 DOI:10.15083/0002004516

2022.06.22

概要

Terrestrial planets, ice giants and the cores of gas giants are thought to be formed by the accumulation of planetesimals. There has been no research on accumulation correctly evaluating the merging criteria at the time of planetesimal collision by using N-body simulation, while a recent study used the conditions of protoplanet coalescence. In order to properly know the accretion process of planetesimals, it is necessary to clarify the merging criteria of the planetesimal including the rebound.

The rotation of protoplanet in the giant impact stage of planetesimal accretion affects the merging criteria of protoplanets and that becomes the initial condition of the study of terrestrial planet's rotation. The origin of Mars's rotation is revealed by the study of protoplanet's rotation because Mars is the survivor of protoplanets. The study of protoplanet's rotation is limited, in particular, the study using N-body simulation as first‐principle calculation doesn't exist. The method is useful to know the mass, the velocity and the spatial distribution of planetesimals during the accretion process. Because the evolution of the distributions affects the rotation angular momentum of protoplanets, the study using N-body simulation is needed to know the realistic rotation of protoplanets, including Mars. In addition, the rebound of colliding planetesimals affects the rotation of protoplanets. Thus, the simulation needs to include the realistic merging criteria of planetesimals.

In this study, as the first step, we investigate conditions that determine coalescence vs. rebound (merging criteria) by numerically colliding undifferentiated rocky planetesimals, undifferentiated icy planetesimals, and differentiated icy planetesimals using Smoothed Particle Hydrodynamics (SPH). We vary the total mass, mass ratio, collision speed, and collision angle of the colliding planetesimals. We investigate the critical impact velocity distinguishing coalescence from the rebound by a radical change of the largest remnant's mass represented against impact velocity. The critical impact velocity normalized by the escape velocity depends on the mass ratio of planetesimals and the impact angles. The critical impact velocity normalized by the escape velocity decreases with the target mass increasing relative to impactor mass, and decreases with increasing the impact angle whose maximum value shows us a grazing collision. The critical impact velocity is independent of the total mass of the planetesimals. This condition has a very small dependence on the composition and internal structure of the planetesimals. From the above results, we formulate the critical impact velocity as a variable for the planetesimals’ mass ratio and collision angle.

As the second step, we investigate the accretion process of planetesimals to know the formation process and the rotation of protoplanets, including Mars, by using N-body simulation code named GPLUM (Global PLanetary system simulation code with Mass-dependent cut-off method). We apply to GPLUM the merging criteria necessary to account for the bounce of planetesimals. We set two hundred thousand rocky 100km-sized planetesimals as a narrow ring around the sun and calculate the orbits of the planetesimals by using N-body simulation. We compare the results of imperfect coalescence case and the results of perfect coalescence case, where all colliding planetesimals merge. Protoplanets grow similarly in each case but the time for sweeping surrounding planetesimals elongates in the imperfect coalescence case. The mass distribution is bipolarized since the growth of planetesimals is prevented by the rebound. Then, runaway growth and oligarchic growth becomes more prominent than the perfect coalescence case.

For both cases, the spin angular velocity rapidly increases when the collision with massive planetesimal occur. However, the angular velocity decrease with mass increasing by planetesimals accretion from random directions.
The mean spin angular velocity of planetesimals and protoplanets under the imperfect coalescence case is 70% and 30% smaller than the perfect coalescence case, respectively. The obliquity of protoplanets distribute in a wide range of angle and they have the peak around 90°, which is parallel to the ecliptic plane of the planetary system. The distribution is almost isotropic, which means the obliquity is decided by the stochastic component of angular momentum.

参考文献

S. J. Aarseth. Dynamical evolution of clusters of galaxies, I. Monthly Notices of the Royal Astronomical Society, 126:223, Jan 1963. doi:10.1093/mnras/126.3.223.

I. Adachi, C. Hayashi, and K. Nakazawa. The gas drag effect on the elliptical motion of a solid body in the primordial solar nebula. Progress of Theoretical Physics, 56:1756-1771, December 1976. doi:10.1143/PTP.56.1756.

C. Agnor and E. Asphaug. Accretion Efficiency during Planetary Collisions. The Astrophysical Journal,り13:L157-L160, October 2004. doi: 10.1086/425158.

C. B. Agnor, R. M. Canup, and H. F. Levison. On the Character and Consequences of Large Impacts in the Late Stage of Terrestrial Planet Formation. Icarus, 142:219-237, November 1999. doi:10.1006/icar.i999.6201.

E. Asphaug. Growth and Evolution of Asteroids. Annual Review of Earth and Planetary Sciences, 37:413-448, May 2009. doi: 10.1146/annurev.earth.36.031207.124214.

E. Asphaug. Similar-sized collisions and the diversity of planets. Chemie der Erde / Geochemistry, 70:199-219, 2010. doi:10.1016/j.chemer.2010.01.004.

E. Asphaug, C. B. Agnor, and Q. Williams. Hit-and-run planetary collisions. Nature, 439:155-160, January 2006. doi:10.1038/natureo4311.

Michael E. Bakich. The Cambridge Planetary Handbook. Cambridge University Press, page 50, 2000.

P. Barge and R. Pellat. Mass spectrum and velocity dispersions during planetesimal accumulation. I - Accretion. Icarus, 93:270-287, October 1991. doi:10.1016/0019-1035(91)90212-0.

Josh Barnes and Piet Hut. A hierarchical O(N log N) force-calculation algorithm. Nature, 324(6096):446-449, Dec 1986. doi:10.1038732444630.

N. M. Batalha, J. F. Rowe, S. T. Bryson, T. Barclay, C. J. Burke, D. A. Caldwell, J. L. Christiansen, F. Mullally, S. E. Thompson, T. M. Brown, A. K. Dupree, D. C. Fabrycky, E. B. Ford, J. J. Fortney, R. L. Gilliland, H. Isaacson, D. W. Latham, G. W. Marcy, S. N. Quinn, D. Ragozzine, A. Shporer, W. J. Borucki, D. R. Ciardi, T. N. Gautier, III, M. R. Haas, J. M. Jenkins, D. G. Koch, J. J. Lissauer, W. Rapin, G. S. Basri, A. P. Boss, L. A. Buchhave, J. A. Carter, D. Charbonneau, J. Christensen-Dalsgaard, B. D. Clarke, W. D. Cochran, B.-O. Demory, J.-M. Desert, E. Devore, L. R. Doyle, G. A. Esquerdo, M. Everett, F. Fressin, J. C. Geary, F. R. Girouard, A. Gould, J. R. Hall,M. J. Holman, A. W. Howard, S. B. Howell,K. A. Ibrahim, K. Kinemuchi, H. Kjeldsen, T. C. Klaus, J. Li, P. W. Lucas, S. Meibom, R. L. Morris, A. Prsa, E. Quintana, D. T. Sanderfer, D. Sasselov, S. E. Seader, J. C. Smith, J. H. Steffen, M. Still,M. C. Stumpe, J. C. Tarter, P. Tenenbaum, G. Torres, J. D. Twicken, K. Uddin, J. Van Cleve, L. Walkowicz, and W. F. Welsh. Planetary Candidates Observed by Kepler. III. Analysis of the First 16 Months of Data. ApJS, 204:24, February 2013. doi: 10.1088/0067-0049/204/2/24,

C. Beauge and S. J. Aarseth. N-body simulations of planetary formation. Monthly Notices of the Royal Astronomical Society, 245:30-39, July 1990.

S. V. W. Beckwith and A. I. Sargent. Circumstellar disks and the search for neighbouring planetary systems. Nature, 383:139-144, September 1996. doi: 10.1038/38313930.

W. Benz. Low Velocity Collisions and the Growth of Planetesimals. Space Science Reviews, 92:279-294, April 2000. doi:10.1023/A:1005207631229.

W. Benz and E. Asphaug. Catastrophic Disruptions Revisited. Icarus, 142:5-20, November 1999. doi:10.1006/icar.i999.6204.

W. Benz, W. L. Slattery, and A. G. W. Cameron. The origin of the moon and the single-impact hypothesis. I. Icarus, 66:515-535, June 1986. doi: 10.1016/0019-1035(86)90088-6.

W. Benz, A. Anic, J. Horner, and J. A. Whitby. The Origin of Mercury. Space Science Reviews, 132:189-202, October 2007. doi:10.1007/S11214-007-9284-1.

A. S. Bonomo, A. Sozzetti, C. Lovis, L. Malavolta, K. Rice, L. A. Buchhave, D. Sasselov, A. C. Cameron, D. W. Latham, E. Molinari, F. Pepe, S. Udry, L. Affer, D. Charbonneau, R. Cosentino, C. D. Dressing, X. Dumusque, P. Figueira, A. F. M. Fiorenzano, S. Gettel, A. Harutyunyan, R. D. Haywood, K. Horne,

M. Lopez-Morales, Μ. Mayor, G. Micela, F. Motalebi, V. Nascimbeni, D. F. Phillips, G. Piotto, D. Pollacco, D. Queloz, D. Segransan, A. Szentgyorgyi, and C. Watson. Characterization of the planetary system Kepler-101 with HARPS-N. A hot super-Neptune with an Earth-sized low-mass companion. Astronomy and Astrophysics, 572:A2, December 2014. doi:10.1051/0004-6361/201424617.

G. Boue and J. Laskar. A Collisionless Scenario for Uranus Tilting. The Astrophysical Journal Letters, 712:L44-L47, March 2010. doi: 10.1088/2041-8205/712/ 1/L44.

Benjamin C. Bromley and Scott J. Kenyon. A New Hybrid N-b0dy-c0agulation Code for the Formation of Gas Giant Planets. The Astrophysical Journal,731 (2):101, Apr 2011.doi:10.1088/0004-637X/731/2/101.

Benjamin C. Bromley and Scott J. Kenyon. Terrestrial Planet Formation: Dynamical Shake-up and the Low Mass of Mars. The Astronomical Journal, 153(5):216, May 2017. doi:10.3847/i538-388i/aa6aaa.

Saverio Cambioni, Erik Asphaug, Alexandre Emsenhuber, Travis S. J. Gabriel, Roberto Furfaro, and Stephen R. Schwartz. Realistic 0n-the-fly outcomes of planetary collisions: Machine learning applied to simulations of giant impacts. The Astrophysical Journal, 875(1):40, apr 2019. doi:10.3847/i538-4357/aboe8a.

A. G. W. Cameron. Physics of the primitive solar accretion disk. Moon and Planets, 18:5-40, February 1978. doi:10.1007/BFoo896696.

R. M. Canup and E. Asphaug. Origin of the Moon in a giant impact near the end of the Earth’s formation. Nature, 412:708-712, August 2001.

J. E. Chambers. Late-stage planetary accretion including hit-and-run collisions and fragmentation. Icarus, 224:43-56, May 2013. doi:10.1016/j.icarus.2013.02.015.

J. E. Chambers and G. W. Wetherill. Making the Terrestrial Planets: N-Body Integrations of Planetary Embryos in Three Dimensions. Icarus, 136:304-327, December 1998. doi:10.1006/icar.i998.6007.

L. I. Cleeves, E. A. Bergin, T. J. Bethell,N. Calvet, J. K. J. Fogel, J. Sauter, and S. Wolf. Transition Disk Chemistry and Future Prospects with ALMA. The Astrophysical Journal Letters, 743:L2, December 2011.doi: 10.1088/2041-8205/743/ 1/L2.

J. N. Cuzzi, A. R. Dobrovolskis, and J. M. Champney. Particle-gas dynamics in the midplane of a protoplanetary nebula. Icarus, 106:102, November 1993. doi: 10.1006/icar.i993.1161.

J. K. Daisaka, H. Tanaka, and S. Ida. Orbital evolution and accretion of protoplanets tidally interacting with a gas disk. II. Solid surface density evolution with type-I migration. Icarus, 185:492-507, December 2006. doi: 10.1016/j.icarus.2006.07.003.

Walter Dehnen and Hossam Aly. Improving convergence in smoothed particle hydrodynamics simulations without pairing instability. Monthly Notices of the Royal Astronomical Society, 425(2):1068-1082, 2012. doi: 10.111i/j.1365-2966.2012.21439.x. URL +http://dx. do i. org/10.1111/j.1365-2966. 2012. 21439· x.

L. Dones and S. Tremaine. On the origin of planetary spins. Icarus, 103:67-92, May 1993. doi:10.1006/icar.i993.1059.

C. El Mir, K. Ramesh, and D. C. Richardson. A new hybrid framework for simulating hypervelocity asteroid impacts and gravitational reaccumulation. Icarus, 321:1013-1025, March 2019. doi:10.1016/j.icarus.2018.12.032.

H. Genda, E. Kokubo, and S. Ida. Merging Criteria for Giant Impacts of Protoplanets. The Astrophysical Journal, 744:137, January 2012. doi: 10.1088/0004-637X/744/2 ハ 37·

H. Genda, T. Fujita, H. Kobayashi, H. Tanaka, and Y. Abe. Resolution dependence of disruptive collisions between planetesimals in the gravity regime. Icarus, 262:58-66, December 2015. doi:10.1016/j.icarus.2015.08.029.

H. Genda, T. Fujita, H. Kobayashi, H. Tanaka, R. Suetsugu, and Y. Abe. Impact erosion model for gravity-dominated planetesimals. Icarus, 294:234-246, September 2017. doi:10.1016/j.icarus.2017.03.009.

P. Goldreich and S. Tremaine. The excitation of density waves at the Lindblad and corotation resonances by an external potential. ApJ, 233:857-871, November 1979. doi:10.1086/157448.

P. Goldreich and W. R. Ward. The Formation of Planetesimals. ApJ, 183: 1051-1062, August 1973. doi: 10.1086/152291.

P. Goldreich, Y. Lithwick, and R. Sari. Planet Formation by Coagulation: A Focus on Uranus and Neptune. Annual Review of Astronomy & Astrophysics, 42: 549-601, September 2004. doi:10.1146/annurev.astro.42.053102.134004.

R. Greenberg, W. K. Hartmann, C. R. Chapman, and J. F. Wacker. Planetesimals to planets - Numerical simulation of collisional evolution. Icarus, 35:1-26, July 1978. doi:10.1016/OO19-1O35(78)9OO57-X.

Yuval Greenzweig and Jack J. Lissauer. Accretion rates of protoplanets. Icarus, 87(1):40-77, Sep 1990. doi: 10.1016/0019-1035(90)90021-2.

N. Haghighipour, T. I. Maindl,C. M. Schafer, and 0. J. Wandel. Triggering the Activation of Main-belt Comets: The Effect of Porosity. The Astrophysical Journal, 855:60, March 2018. doi:10.3847/i538-4357/aaa7f3.

W. K. Hartmann and D. R. Davis. Satellite-sized planetesimals and lunar origin. Icarus, 24:504-514, April 1975. doi:10.1016/0019-1035(75)90070-6.

C. Hayashi. Structure of the Solar Nebula, Growth and Decay of Magnetic Fields and Effects of Magnetic and Turbulent Viscosities on the Nebula. Progress of Theoretical Physics Supplement, 70:35-53, 1981. doi:10.1143/PTPS.70.35.

C. Hayashi, K. Nakazawa, and Y. Nakagawa. Formation of the solar system. In D. C. Black and M. S. Matthews, editors, Protostars and Planets II, pages 1100-1153, 1985.

N. Hosono, T. R. Saitoh, and J. Makino. A Comparison of SPH Artificial Viscosities and Their Impact on the Keplerian Disk. The Astrophysical Journal Supplement Series, 224:32, June 2016. doi: 10.3847/0067-0049/224/2/32.

N. Hosono, M. Iwasawa, A. Tanikawa, K. Nitadori, T. Muranushi, and J. Makino. Unconvergence of very-large-scale giant impact simulations. Publications of the Astronomical Society of Japan, 69:26, April 2017. doi:10.1093/pasj/PSW131.

J. P. Huchra and M. J. Geller. Groups of galaxies. I - Nearby groups. ApJ, 257: 423-437, June 1982. doi:10.1086/160000.

W. F. Huebner. Composition of Comets: Observations and Models. Earth Moon and Planets, 89:179-195, October 2002. doi:10.1023/A:1021506821862.

S. Ida. Stirring and dynamical friction rates of planetesimals in the solar gravitational field. Icarus, 88:129-145, November 1990. doi: 10.1016/0019-1035(90)90182-9.

S. Ida and J. Makino. N-body simulation of gravitational interaction between planetesimals and a protoplanet. I - Velocity distribution of planetesimals. Icarus, 96:107-120, March 1992a. doi: 10.1016/0019-1035(92)90008-11.

S. Ida and J. Makino. N-body simulation of gravitational interaction between planetesimals and a protoplanet. II - Dynamical friction. Icarus, 98:28-37, July 1992b. doi:10.1016/0019-1035(92)90203-5.

S. Ida and J. Makino. Scattering of planetesimals by a protoplanet - Slowing down of runaway growth. Icarus, 106:210, November 1993. doi:10.1006/icar.i993.1167.

S. Ida and K. Nakazawa. Collisional probability of planetesimals revolving in the solar gravitational field. III. Astronomy and Astrophysics, 224(1-2):303-315, Oct 1989.

S. Ida, E. Kokubo, and J. Makino. The Origin of Anisotropic Velocity Dispersion of Particles in a Disc Potential. Monthly Notices of the Royal Astronomical Society, 263:875, August 1993. doi:10.1093/mnras/263.4.875.

S. Ida, R. M. Canup, and G. R. Stewart. Lunar accretion from an impact-generated disk. Nature, 389:353-357, September 1997. doi:10.1038Λ8669.

M. Iwasawa, A. Tanikawa, N. Hosono, K. Nitadori, T. Muranushi, and J. Makino. FDPS: Framework for Developing Particle Simulators. Astrophysics Source Code Library, April 2016a.

Masaki Iwasawa, Ataru Tanikawa, Natsuki Hosono, Keigo Nitadori,rrakayuki Muranushi, and Junichiro Makino. Implementation and performance of FDPS: a framework for developing parallel particle simulation codes. Publications of the Astronomical Society of Japan, 68(4):54, Aug 2016b. doi: 10.1093/pasj/pSW053.

Masaki Iwasawa, Shoichi Oshino, Michiko S. Fujii, and Yasunori Hori. PENTACLE: Parallelized particle-particle particle-tree code for planet formation. Publications of the Astronomical Society of Japan, 69(5):81, Oct 2017. doi:10.1093/pasj/psxo73,

Martin Jutzi. SPH calculations of asteroid disruptions: The role of pressure dependent failure models. Planetary and Space Science, 107:3-9, Mar 2015. doi:10.1016/j.pss.2014.09.012.

Akimasa Kataoka, Hidekazu Tanaka, Satoshi Okuzumi, and Koji Wada. Fluffy dust forms icy planetesimals by static compression. Astronomy & Astrophysics, 557:L4, Sep 2013. doi: 10.1051/0004-6361/201322151.

Scott J. Kenyon and Benjamin C. Bromley. Variations on Debris Disks: Icy Planet Formation at 30-150 AU for 1-3 M Main-Sequence Stars. The Astrophysical Journal Supplement Series, 179(2):451-483, Dec 2008. doi: 10.1086/591794.

H. Kobayashi, H. Tanaka, A. V. Krivov, and S. Inaba. Planetary growth with collisional fragmentation and gas drag. Icarus, 209:836-847, October 2010. doi:10.1016/j.icarus.2010.04.021.

E. Kokubo and H. Genda. Formation of Terrestrial Planets from Protoplanets Under a Realistic Accretion Condition. The Astrophysical Journa丄 Letters, 714: L21-L25, May 2010. doi:10.1088/2041-8205/714/1/L21.

E. Kokubo and S. Ida. On Runaway Growth of Planetesimals. Icarus, 123: 180-191, September 1996. doi:10.1006/icar.i996.0148.

E. Kokubo and S. Ida. Oligarchic Growth of Protoplanets. Icarus, 131:171-178, January 1998. doi:10.1006/icar.i997.5840.

E. Kokubo and S. Ida. Formation of Protoplanets from Planetesimals in the Solar Nebula. Icarus, 143:15-27, January 2000. doi:10.1006/icar.i999.6237.

E. Kokubo and S. Ida. Formation of Protoplanet Systems and Diversity of Planetary Systems. ApJ, 581:666-680, December 2002. doi: 10.1086/344105.

E. Kokubo and S. Ida. Formation of Terrestrial Planets from Protoplanets. II. Statistics of Planetary Spin. ApJ, 671:2082-2090, December 2007. doi: 10.1080/522364.

E. Kokubo and J. Makino. A Modified Hermite Integrator for Planetary Dynamics. Publications of the Astronomical Society of Japan, 56:861-868, October 2004. doi:10.1093/pasj/56.5.861.

Junko Kominami, Hidekazu Tanaka, and Shigeru Ida. Orbital evolution and accretion of protoplanets tidally interacting with a gas disk. I. Effects of interaction with planetesimals and other protoplanets. Icarus, 178(2): 540-552, Nov 2005. doi:10.1016/j.icarus.2005.05.008.

G. P. Kuiper. On the Origin of the Solar System. Proceedings of the National Academy of Science, 37:1-14, January 1951. doi:10.1073/pnas.37.1.1.

Z. M. Leinhardt and S. T. Stewart. Collisions between Gravity-dominated Bodies. I. Outcome Regimes and Scaling Laws. The Astrophysical Journal,, 745:79, January 2012. doi:10.1088/0004-637X/745/1/79.

Z. M. Leinhardt, R. A. Marcus, and S. T. Stewart. The Formation of the Collisional Family Around the Dwarf Planet Haumea. The Astrophysical Journal, 714: 1789-1799, May 2010. doi:10.1088/0004-637X/714/2/1789.

Z. M. Leinhardt, J. Dobinson, P. J. Carter, and S. Lines. Numerically Predicted Indirect Signatures of Terrestrial Planet Formation. The Astrophysical Journal, 806:23, June 2015. doi:10.1088/0004-637X/806/1/23.

H. F. Levison, M. J. Duncan, and E. Thommes. A Lagrangian Integrator for Planetary Accretion and Dynamics (LIPAD). The Astronomical Journal, 144: 119, October 2012. doi:10.1088/0004-6256/144/4/119.

J. J. Lissauer. Planet formation. Annual review of astronomy and astrophysics, 31:129-174, 1993. doi:10.1146/annurev.aa.31.090193.001021.

J. J. Lissauer and D. M. Kary. The origin of the systematic component of planetary rotation. I - Planet on a circular orbit. Icarus, 94:126-159, November 1991. doi:10.1016/0019-1035(91)90145-5.

J. J. Lissauer and V. S. Safronov. The random component of planetary rotation. Icarus, 93:288-297, October 1991. doi:10.101670019-1035(91)90213-0.

J. J. Lissauer, L. Dones, and K. Ohtsuki. Origin and Evolution of Terrestrial Planet Rotation, pages 101-112. 2000.

V. V. Makarov. Conditions of Passage and Entrapment of Terrestrial Planets in Spin-orbit Resonances. ApJ, 752:73, June 2012. doi:10.1088/0004-637X/752/1/73.

J. Makino. Optimal order and time-step criterion for Aarseth-type N-body integrators. ApJ, 369:200-212, March 1991. doi:10.1086/169751.

J. Makino and S. J. Aarseth. On a Hermite integrator with Ahmad-Cohen scheme for gravitational many-body problems. PAS J: Publications of the Astronomical Society of Japan (ISSN 0004-6264), 44:141-151, April 1992.

J. Makino, T. Fukushige, Y. Funato, and E. Kokubo. On the mass distribution of planetesimals in the early runaway stage. New Astronomy, 3:411-417, November 1998. doi:10.1016/Si384-io76(98)ooo2i-9,

R. Malhotra. The origin of Pluto’s peculiar orbit. Nature, 365:819-821, October 1993. doi:10.1038/3058i9ao.

R. Malhotra. The Origin of Pluto’s Orbit: Implications for the Solar System Beyond Neptune. Astronomical Journal,丄丄0:420, July 1995. doi: 10.1086/117532.

U. Marboeuf, A. Thiabaud, Y. Alibert, N. Cabral, and W. Benz. From stellar nebula to planetesimals. Astronomy & Astrophysics, 570:A35, October 2014. doi: 10.1051/0004-6361/201322207.

R. A. Marcus, S. T. Stewart, D. Sasselov, and L. Hernquist. Collisional Stripping and Disruption of Super-Earths. The Astrophysical Journal Letters, 700: L118-L122, August 2009. doi:10.1088/0004-637X/700/2/L118.

R. A. Marcus, D. Sasselov, S. T. Stewart, and L. Hernquist. Water/Icy Super-Earths: Giant Impacts and Maximum Water Content. The Astrophysical Journal Letters, 719:L45-L49, August 2010. doi:10.1088/2041-8205/719/1/L45.

F. S. Masset, A. Morbidelli, A. Crida, and J. Ferreira. Disk Surface Density Transitions as Protoplanet Traps. ApJ, 642:478-487, May 2006. doi: 10.1086/500967.

M. Mayor and D. Queloz. A Jupiter-mass companion to a solar-type star. Nature, 378:355-359, November 1995. doi: 10.1038/37835530.

H. J. Melosh. Impact cratering: A geologic process. 1989.

H. Mizuno. Formation of the Giant Planets. Progress of Theoretical Physics, 64: 544-557, August 1980. doi:10.1143/PTP.64.544.

J. J. Monaghan. Smoothed particle hydrodynamics. Annual review of astronomy and astrophysics, 30:543-574, 1992. doi:10.1146/annurev.aa.30.090192.002551.

J. J. Monaghan. SPH and Riemann Solvers. Journal of Computational Physics, 136:298-307, September 1997. doi:10.1006/jcph.i997.5732.

A. Morbidelli, K. Tsiganis, K. Batygin, A. Crida, and R. Gomes. Explaining why the uranian satellites have equatorial prograde orbits despite the large planetary obliquity. Icarus, 219:737-740, June 2012. doi:10.1016/j.icarus.2012.03.025.

R. Morishima. Onset of oligarchic growth and implication for accretion histories of dwarf planets. Icarus, 281:459-475, January 2017. doi: 10.1016/j.icarus.2016.07.019.

Y. Nakagawa, C. Hayashi, and K. Nakazawa. Accumulation of planetesimals in the solar nebula. Icarus, 54:361-376, June 1983. doi:10.101670019-1035(83)90234-8.

Shoichi Oshino, Yoko Funato, and Junichiro Makino. Particle-Particle Particle-Tree: A Direct-Tree Hybrid Scheme for Collisional N-Body Simulations. Publications of the Astronomical Society of Japan, 63:881, Aug 2011. doi:10.1093/pasj/63.4.881.

F. Perri and A. G. W. Cameron. Hydro dynamic instability of the solar nebula in the presence of a planetary core. Icarus, 22:416-425, August 1974. doi: 10.1016/0019-1035(74)90074-8.

W. K. M. Rice and P. J. Armitage. On the Formation Timescale and Core Masses of Gas Giant Planets. The Astrophysical Journal, 598:L55-L58, November 2003. doi:10.1086/380390.

E. J. Rivera, J. J. Lissauer, R. P. Butler, G. W. Marcy, S. S. Vogt, D. A. Fischer, T. M. Brown, G. Laughlin, and G. W. Henry. A ~7.5 M Planet Orbiting the Nearby Star, GJ 876. The Astrophysical Journal, 634:625-640, November 2005. doi: 10.1086/491669.

V. S. Safronov. Sizes of the largest bodies falling onto the planets during their formation. Sov. Astron., 9:987-991, June 1966.

H. Tanaka, T. Takeuchi, and W. R. Ward. Three-Dimensional Interaction between a Planet and an Isothermal Gaseous Disk. I. Corotation and Lindblad Torques and Planet Migration. ApJ, 565:1257-1274, February 2002. doi: 10.1086/324713.

Hidekazu Tanaka and William R. Ward. Three-dimensional Interaction between a Planet and an Isothermal Gaseous Disk. II. Eccentricity Waves and Bending Waves. The Astrophysical Journal, 602(1):388-395, Feb 2004. doi: 10.1086/380992.

S. E. Thompson, J. L. Coughlin, K. Hoffman, F. Mullally, J. L. Christiansen, C. J. Burke, S. Bryson, N. Batalha, M. R. Haas, J. Catanzarite, J. F. Rowe, G. Barentsen, D. A. Caldwell,B. D. Clarke, J. M. Jenkins, J. Li, D. W. Latham, J. J. Lissauer, S. Mathur, R. L. Morris, S. E. Seader, J. C. Smith, T. C. Klaus, J. D.

Twicken, B. Wohler, R. Akeson, D. R. Ciardi, W. D. Cochran, T. Barclay, J. R. Campbell,W. J. Chaplin, D. Charbonneau, C. E. Henze, S. B. Howell,D. Huber, A. Prsa, S. V. Ramirez, T. D. Morton, J. Christensen-Dalsgaard, J. L. Dotson, L. Doyle, E. W. Dunham, A. K. Dupree, E. B. Ford, J. C. Geary, F. R. Girouard, H. Isaacson, H. Kjeldsen, J. H. Steffen, E. V. Quintana, D. Ragozzine, A. Shporer, V. Silva Aguirre, M. Still,P. Tenenbaum, W. F. Welsh, A. Wolfgang, K. A. Zamudio, D. G. Koch, and W. J. Borucki. Planetary Candidates Observed by Kepler. VIII. A Fully Automated Catalog With Measured Completeness and Reliability Based on Data Release 25. ArXiv e-prints, October 2017.

J.H. Tillotson. Metallic equations of state for hypervelocity impact. General Atomic Report GA-3216, General Atomic, San Diego, CA,1962.

D. E. Trilling, W. Benz, T. Guillot, J. I. Lunine, W. B. Hubbard, and A. Burrows. Orbital Evolution and Migration of Giant Planets: Modeling Extrasolar Planets. ApJ, 500:428-439, June 1998. doi: 10.1086/305711.

D. E. Trilling, J. I. Lunine, and W. Benz. Orbital migration and the frequency of giant planet formation. Astronomy and Astrophysics, 394:241-251, October 2002. doi: 10.1051/0004-6361:20021108.

K. Tsiganis, R. Gomes, A. Morbidelli, and H. F. Levison. Origin of the orbital architecture of the giant planets of the Solar System. Nature, 435:459-461, May 2005. doi:10.1038/natureo3539,

D. Valencia, D. D. Sasselov, and R. J.0’Connell. Radius and Structure Models of the First Super-Earth Planet. The Astrophysical Journal, 656:545-551, February 2007. doi: 10.1086/509800.

K. J. Walsh, A. Morbidelli, S. N. Raymond, D. P. 0, Brien, and A. M. Mandell.A low mass for Mars from Jupiter’s early gas-driven migration. Nature, 475: 206-209, July 2011. doi:10.1038/natureio201.

W. R. Ward. On the rapid formation of giant planet cores. Astrophysical Journal, 345:L99-L102, October 1989. doi:10.1086/185562.

W. R. Ward. Protoplanet Migration by Nebula Tides. Icarus, 126:261-281, April 1997. doi:10.1006/icar.i996.5647.

S. J. Weidenschilling, D. Spaute, D. R. Davis, F. Marzari, and K. Ohtsuki. Accretional Evolution of a Planetesimal Swarm. Icarus, 128:429-455, August 1997. doi:10.1006/icar.i997.5747.

G. W. Wetherill. Occurrence of giant impacts during the growth of the terrestrial planets. Science, 228:877-879, May 1985. doi:10.1126/science.228.4701.877.

G. W. Wetherill. Comparison of analytical and physical modeling of planetesimal accumulation. Icarus, 88:336-354, December 1990. doi: 10.1016/0019-1035(90)90086-0.

G. W. Wetherill and G. R. Stewart. Accumulation of a swarm of small planetesimals. Icarus, 77:330-357, February 1989. doi: 10.1016/0019-1035(89)90093-6.

G. W. Wetherill and G. R. Stewart. Formation of planetary embryos - Effects of fragmentation, low relative velocity, and independent variation of eccentricity and inclination. Icarus, 106:190, November 1993. doi:10.1006/icar.i993.1166.

S. Wolf and G. D’Angelo. On the Observability of Giant Protoplanets in Circumstellar Disks. ApJ, 619:1114-1122, February 2005. doi:10.10867426662.

A. N. Youdin and F. H. Shu. Planetesimal Formation by Gravitational Instability. ApJ, 580:494-505, November 2002. doi: 10.1086/343109.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る