リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Constructing theoretical model of gas accretion for constraining planet formation theory by using observations of forming stars and planets : modeling non-equilibrium micro-physics in detail」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Constructing theoretical model of gas accretion for constraining planet formation theory by using observations of forming stars and planets : modeling non-equilibrium micro-physics in detail

青山, 雄彦 東京大学 DOI:10.15083/0002001894

2021.10.04

概要

A gas giant is a giant planet composed mainly of hydrogen and helium and is a most massive component of a circumstellar system. Because of strong gravity, gas giants have great influence on the material distributions in planet-forming circumstellar gaseous disks (often called protoplanetary disks or PPDs) and on the formation and dynamical evolution of other planets and satellites. The formation process of gas giants is mainly the accumulation (or accretion) of hydrogen/helium gas whose origin is the gaseous component of PPDs. The gas accretion is, therefore, crucial to understanding the formation of the whole planetary system including planets, satellites, and other small bodies.

Recent improvements of observational techniques and instruments have enabled us to observe protoplanets growing via gas accretion. Interestingly enough, the hydrogen Balmer line (or Hα) emission has been detected for two protoplanetary candidates, LkCa15 b and PDS70 b. The source of hydrogen line emission such Hα is excited hydrogen. Thus, the detection of Hα suggests that those protoplanets are surrounded by gas with a temperature high enough (≳ 1 × 104 K) to generate Hα emission. However, there is no detailed theoretical model for explaining the Hα emission of accreting gas giants. Recent hydrodynamic simulations of the gaseous flow around protoplanets show that the flow toward the protoplanet (accretion flow) passes through strong shocks. One of the goals of this thesis is to confirm that such shock compression can heat up the gas to a temperature sufficient to generate Hα emission.

Young stellar objects (YSOs) have been also hotly investigated both observationally and the-oretically. Some YSOs show excess emission relative to their photospheric emission, which is thought to be due to gas accretion onto the YSOs. While reproducing the excess continuum at shorter wavelengths than the visible as emission from the shock-heated gas, the previous theoretical studies concluded that the excess lines such as Hα were unlikely to originate from the shock-heated gas, because their models were unable to explain the broadened line profile of Hα, which cor- responds to the Doppler broadening with temperature of 1 × 106 K. Such a hot gas can emit no significant Hα because hydrogen is completely ionized. Another goal of this thesis is to resolve such a contradiction by modeling the transient process in the postshock flow with rapidly changing temperature.

In this thesis, toward the above goals, I construct a new 1D radiative hydrodynamic model of the accretion flow after the shock. In Chapter 2, I describe the details of the model. In contrast to previous studies which assumed the equilibrium between collisional excitations and radiative de-excitations of hydrogen and neglected short-timescale processes, I consider non-equilibrium states and take micro-physics such as excitation and ionization of hydrogen and radiative transfer into account. In Chapter 3, I show the flow properties after the shock-heating as the results of the numerical modeling. Also, the hydrogen line intensities are given for the shock-related parameters, namely, the velocity and number density of the gas just before the shock.

In Chapter 4, I apply the model results to the accreting protoplanets, LkCa15 b and PDS70 b, and successfully reproduce the observed Hα luminosity in the following cases: (A) The accreting gas giant has a magnetic field strong enough to make a cavity at the inner part of the circum- planetary disk (CPD) and, then, the gas around the CPD inner edge falls onto the planetary surface, yielding a strong shock; (B) the gas falls almost vertically onto the surface of the CPD from high altitudes of the PPD and yields a strong shock. In this case, the magnetic force of the accreting gas giant pushes the gas back to the PPD through the midplane of the CPD and, then, the gas comes back and falls onto the CPD from high altitudes, yielding a strong shock again. This cycle is needed to keep the infalling gas density high enough to reproduce the observed Hα luminosity. In conclusion, the detected Hα emission suggests that the accreting gas giants have strong magnetic fields.

In Chapter 5, I apply the results of my model to accreting protostars. Then, I successfully reproduce the Hα line profiles observed in the spectral energy distributions (SEDs) of low-mass YSOs, because of line emission from hydrogen with non-equilibrium energy states in the postshock region with varying temperature. Also, considering the hydrogen Lyman-α, which is unobservable but brighter than the other hydrogen lines including Hα, I obtain the stellar mass accretion rate higher by an order of magnitude than the previous estimate.

In Chapter 6, I discuss the implications of the model constructed in this thesis. The theory of planet formation with strong magnetic fields has been currently under development. Since my model prefers such a new concept of planet formation for interpretation of the observed planetary Hα, I describe how the strong magnetic fields change the formation of planetary systems including planets and satellites. The findings in this thesis are expected to make a great contribution to future characterization of forming planets and planetary systems.

参考文献

Alcalá, J. M., Natta, A., Manara, C. F., et al. 2014, A&A, 561, A2

Allard, F., Homeier, D., & Freytag, B. 2012, Philosophical Transactions of the Royal Society of London Series A, 370, 2765

Allen, C. W. 1976, Astrophysical Quantities (London: Athlone) Ayliffe, B. A., & Bate, M. R. 2009, MNRAS, 397, 657

Backus, I., & Quinn, T. 2016, MNRAS, 463, 2480

Balbus, S. A., & Hawley, J. F. 1998, Reviews of Modern Physics, 70, 1

Barman, T. S., Konopacky, Q. M., Macintosh, B., & Marois, C. 2015, ApJ, 804, 61 Basri, G., & Bertout, C. 1989, ApJ, 341, 340

Batygin, K. 2018, AJ, 155, 178

Bell, K. R., Cassen, P. M., Klahr, H. H., & Henning, T. 1997, ApJ, 486, 372 Bell, K. R., & Lin, D. N. C. 1994, ApJ, 427, 987

Bertout, C., Basri, G., & Bouvier, J. 1988, ApJ, 330, 350

Beuzit, J.-L., Feldt, M., Dohlen, K., et al. 2008, in Proc. SPIE, Vol. 7014, Ground-based and Airborne Instrumentation for Astronomy II, 701418

Biller, B. A., Males, J., Rodigas, T., et al. 2014, ApJ, 792, L22 Blanksby, S. J., & Ellison, G. B. 2003, Chem. Res., 36(4), 255 Blondel, P. F. C., & Djie, H. R. E. T. A. 2006, A&A, 456, 1045

Bodenheimer, P., & Pollack, J. B. 1986, Icarus, 67, 391

Bohlin, R. C., Savage, B. D., & Drake, J. F. 1978, ApJ, 224, 132 Boss, A. P. 1998, ApJ, 503, 923—. 2002, ApJ, 576, 462

Briceño, C., Luhman, K. L., Hartmann, L., Stauffer, J. R., & Kirkpatrick, J. D. 2002, ApJ, 580, 317

Brittain, S. D., Carr, J. S., Najita, J. R., Quanz, S. P., & Meyer, M. R. 2014, ApJ, 791, 136

Bryan, M. L., Benneke, B., Knutson, H. A., Batygin, K., & Bowler, B. P. 2018, Nature Astronomy, 2, 138

Burrows, A., Marley, M., Hubbard, W. B., et al. 1997, ApJ, 491, 856 Calvet, N., & Gullbring, E. 1998, ApJ, 509, 802

Calvet, N., Muzerolle, J., Briceño, C., et al. 2004, AJ, 128, 1294 Cameron, A. G. W. 1978, Moon and Planets, 18, 5

Canup, R. M., & Ward, W. R. 2002, AJ, 124, 3404

Castor, J. I. 2004, Radiation Hydrodynamics (UK: Cambridge University Press), 368 Cauley, P. W., & Johns-Krull, C. M. 2016, ApJ, 825, 147

Chabrier, G., Baraffe, I., Allard, F., & Hauschildt, P. 2000, ApJ, 542, 464 Chandrasekhar, S. 1960, Radiative transfer (New York: Dover) Christensen, U. R., Holzwarth, V., & Reiners, A. 2009, Nature, 457, 167

Close, L. M., Gasho, V., Kopon, D., et al. 2008, in Proc. SPIE, Vol. 7015, Adaptive Optics Systems, 70150Y

Close, L. M., Follette, K. B., Males, J. R., et al. 2014, ApJ, 781, L30 Crida, A., & Morbidelli, A. 2007, MNRAS, 377, 1324

Cridland, A. J. 2018, ArXiv e-prints, arXiv:1809.04657 Currie, T., Cloutier, R., Brittain, S., et al. 2015, ApJ, 814, L27

D’Angelo, G., Henning, T., & Kley, W. 2002, A&A, 385, 647 D’Angelo, G., Kley, W., & Henning, T. 2003, ApJ, 586, 540

Del Zanna, G., Dere, K. P., Young, P. R., Landi, E., & Mason, H. E. 2015, A&A, 582, A56

Dere, K. P., Landi, E., Mason, H. E., Monsignori Fossi, B. C., & Young, P. R. 1997, A&AS, 125, 149

Desch, S. J. 2007, ApJ, 671, 878

Dodin, A. 2018, MNRAS, 475, 4367

Dodin, A. V., & Lamzin, S. A. 2012, Astronomy Letters, 38, 649

Donati, J.-F., Bouvier, J., Alencar, S. H., et al. 2018, MNRAS, arXiv:1811.04810 Dürmann, C., & Kley, W. 2015, A&A, 574, A52

Fairlamb, J. R., Oudmaijer, R. D., Mendigutía, I., Ilee, J. D., & van den Ancker, M. E. 2015, MNRAS, 453, 976

Fang, M., van Boekel, R., Wang, W., et al. 2009, A&A, 504, 461

Gaia Collaboration, Brown, A. G. A., Vallenari, A., et al. 2018, A&A, 616, A1 Gammie, C. F. 2001, ApJ, 553, 174

Ghosh, P., & Lamb, F. K. 1979a, ApJ, 232, 259—. 1979b, ApJ, 234, 296

Goldreich, P., & Tremaine, S. 1980, ApJ, 241, 425

Goldreich, P., & Ward, W. R. 1973, ApJ, 183, 1051

Gomes, R., Levison, H. F., Tsiganis, K., & Morbidelli, A. 2005, Nature, 435, 466 Graboske, Jr., H. C., Pollack, J. B., Grossman, A. S., & Olness, R. J. 1975, ApJ, 199, 265 Gregorio-Hetem, J., & Hetem, A. 2002, MNRAS, 336, 197

Grossman, A. S., Graboske, H., Pollack, J., Reynolds, R., & Summers, A. 1972, Physics of the Earth and Planetary Interiors, 6, 91

Güdel, M., Skinner, S. L., Mel’Nikov, S. Y., et al. 2007, A&A, 468, 529 Hartigan, P., Edwards, S., & Ghandour, L. 1995, ApJ, 452, 736 Hartmann, L., Hewett, R., & Calvet, N. 1994, ApJ, 426, 669

Hayashi, C. 1981, Progress of Theoretical Physics Supplement, 70, 35

Hayashi, C., Adachi, I., & Nakazawa, K. 1976, Progress of Theoretical Physics, 55, 945

Henden, A. A., Levine, S., Terrell, D., & Welch, D. L. 2015, in American Astronomical Society Meeting Abstracts, Vol. 225, American Astronomical Society Meeting Abstracts #225, 336.16

Herbig, G. H. 1960, ApJS, 4, 337—. 1962, Advances in Astronomy and Astrophysics, 1, 47 Herczeg, G. J., & Hillenbrand, L. A. 2008, ApJ, 681, 594

Herczeg, G. J., Wood, B. E., Linsky, J. L., Valenti, J. A., & Johns-Krull, C. M. 2004, ApJ, 607, 369

Hillenbrand, L. A., Strom, S. E., Vrba, F. J., & Keene, J. 1992, ApJ, 397, 613

Hindmarsh, A. C. 2002, URL: http://www.llnl.gov/CASC/odepack [cited October 18, 2005] Hollenbach, D., & McKee, C. F. 1979, ApJS, 41, 555—. 1989, ApJ, 342, 306

Hubbard, W. B. 1980, Reviews of Geophysics and Space Physics, 18, 1 Hubrig, S., Carroll, T. A., Schöller, M., & Ilyin, I. 2015, MNRAS, 449, L118

Hubrig, S., Pogodin, M. A., Yudin, R. V., Schöller, M., & Schnerr, R. S. 2007, A&A, 463, 1039 Hubrig, S., Stelzer, B., Schöller, M., et al. 2009, A&A, 502, 283

Humlícek, J. 1982, J. Quant. Spec. Radiat. Transf., 27, 437

Iida, A., Nakamoto, T., Susa, H., & Nakagawa, Y. 2001, Icarus, 153, 430

Ikoma, M., Emori, H., & Nakazawa, K. 1998, Journal of Physics Condensed Matter, 10, 11537 Ikoma, M., Nakazawa, K., & Emori, H. 2000, ApJ, 537, 1013

Ingleby, L., Calvet, N., Hernández, J., et al. 2014, ApJ, 790, 47 Ingleby, L., Calvet, N., Herczeg, G., et al. 2013, ApJ, 767, 112 Janson, M., Brandt, T. D., Kuzuhara, M., et al. 2013, ApJ, 778, L4 Johns, C. M., & Basri, G. 1995, AJ, 109, 2800

Johns-Krull, C. M. 2007, ApJ, 664, 975

Johns-Krull, C. M., & Basri, G. 1997, ApJ, 474, 433

Johns-Krull, C. M., & Valenti, J. A. 2000, in Astronomical Society of the Pacific Conference Series, Vol. 198, Stellar Clusters and Associations: Convection, Rotation, and Dynamos, ed.R. Pallavicini, G. Micela, & S. Sciortino, 371

Johns-Krull, C. M., Valenti, J. A., Hatzes, A. P., & Kanaan, A. 1999, ApJ, 510, L41 Johnson, L. C. 1972, ApJ, 174, 227

Joy, A. H. 1945, ApJ, 102, 168

Kanagawa, K. D., Tanaka, H., & Szuszkiewicz, E. 2018, ApJ, 861, 140

Kastner, J. H., Huenemoerder, D. P., Schulz, N. S., Canizares, C. R., & Weintraub, D. A. 2002, ApJ, 567, 434

Kenyon, S. J., & Hartmann, L. 1987, ApJ, 323, 714

Keppler, M., Benisty, M., Müller, A., et al. 2018, A&A, 617, A44 Kley, W. 1999, MNRAS, 303, 696

Koenigl, A. 1991, ApJ, 370, L39

Konopacky, Q. M., Barman, T. S., Macintosh, B. A., & Marois, C. 2013, Science, 339, 1398 Korycansky, D. G., & Papaloizou, J. C. B. 1996, The Astrophysical Journal Supplement Series,105, 181

Kraus, A. L., & Hillenbrand, L. A. 2009, ApJ, 704, 531 Kraus, A. L., & Ireland, M. J. 2012, ApJ, 745, 5

Kuiper, G. P. 1951, Proceedings of the National Academy of Science, 37, 1

Kuzuhara, M., Tamura, M., Kudo, T., et al. 2013, ApJ, 774, 11 Lamzin, S. A. 1998, Astronomy Reports, 42, 322

Landau, L. D., & Lifshitz, E. M. 1959, Fluid mechanics, Course of theoretical physics / by L. D. Landau and E. M. Lifshitz, Vol. 6 (Pergamon Press)

Lenzuni, P., Gail, H.-P., & Henning, T. 1995, ApJ, 447, 848

Lin, D. N. C., & Papaloizou, J. C. B. 1993, in Protostars and Planets III, ed. E. H. Levy & J. I. Lunine, 749

Long, Z. C., Akiyama, E., Sitko, M., et al. 2018, ApJ, 858, 112 Lubow, S. H., Seibert, M., & Artymowicz, P. 1999, ApJ, 526, 1001 Luhman, K. L. 2004a, ApJ, 602, 816—. 2004b, ApJ, 617, 1216—. 2007, ApJS, 173, 104

Luhman, K. L., Briceño, C., Stauffer, J. R., et al. 2003, ApJ, 590, 348 Lunine, J. I., & Stevenson, D. J. 1982, Icarus, 52, 14

Macintosh, B., Graham, J., Palmer, D., et al. 2006, in Proc. SPIE, Vol. 6272, Society of Photo- Optical Instrumentation Engineers (SPIE) Conference Series, 62720L

Macintosh, B., Graham, J. R., Barman, T., et al. 2015, Science, 350, 64 Manara, C. F., Testi, L., Natta, A., et al. 2014, A&A, 568, A18

Martín, E. L., Dougados, C., Magnier, E., et al. 2001, ApJ, 561, L195 Martin, S. C. 1996, ApJ, 470, 537

Mendigutía, I., Oudmaijer, R. D., Schneider, P. C., et al. 2018, A&A, 618, L9 Meru, F., & Bate, M. R. 2012, MNRAS, 427, 2022

Miki, S. 1982, Progress of Theoretical Physics, 67, 1053 Millikan, R. C., & White, D. R. 1963, J. Chem. Phys., 39, 3209

Mizuno, H. 1980, Progress of Theoretical Physics, 64, 544

Mizuno, H., Nakazawa, K., & Hayashi, C. 1978, Progress of Theoretical Physics, 60, 699 Mordasini, C., Marleau, G.-D., & Mollière, P. 2017, A&A, 608, A72

Mosqueira, I., & Estrada, P. R. 2003a, Icarus, 163, 198—. 2003b, Icarus, 163, 232

Müller, A., Keppler, M., Henning, T., et al. 2018, A&A, 617, L2

Muzerolle, J., Calvet, N., Briceño, C., Hartmann, L., & Hillenbrand, L. 2000, ApJ, 535, L47 Muzerolle, J., Calvet, N., & Hartmann, L. 1998, ApJ, 492, 743—. 2001, ApJ, 550, 944

Muzerolle, J., D’Alessio, P., Calvet, N., & Hartmann, L. 2004, ApJ, 617, 406

Muzerolle, J., Hillenbrand, L., Calvet, N., Briceño, C., & Hartmann, L. 2003, ApJ, 592, 266 Muzerolle, J., Luhman, K. L., Briceño, C., Hartmann, L., & Calvet, N. 2005, ApJ, 625, 906 Nelson, R. P., Papaloizou, J. C. B., Masset, F., & Kley, W. 2000, MNRAS, 318, 18

Neufeld, D. A., & Kaufman, M. J. 1993, ApJ, 418, 263 Pecaut, M. J., & Mamajek, E. E. 2016, MNRAS, 461, 794

Perri, F., & Cameron, A. G. W. 1974, Icarus, 22, 416 Petrov, P. P. 2003, Astrophysics, 46, 506

Quanz, S. P., Amara, A., Meyer, M. R., et al. 2015, ApJ, 807, 64—. 2013a, ApJ, 766, L1

Quanz, S. P., Avenhaus, H., Buenzli, E., et al. 2013b, ApJ, 766, L2 Rafikov, R. R. 2005, ApJ, 621, L69—. 2007, ApJ, 662, 642

Reggiani, M., Quanz, S. P., Meyer, M. R., et al. 2014, ApJ, 792, L23

Reggiani, M., Christiaens, V., Absil, O., et al. 2018, A&A, 611, A74 Rigliaco, E., Natta, A., Testi, L., et al. 2012, A&A, 548, A56

Sallum, S., Follette, K. B., Eisner, J. A., et al. 2015, Nature, 527, 342 Sasaki, T., Stewart, G. R., & Ida, S. 2010, ApJ, 714, 1052

Saumon, D., & Guillot, T. 2004, ApJ, 609, 1170

Schneider, P. C., Günther, H. M., Robrade, J., Schmitt, J. H. M. M., & Güdel, M. 2018, A&A, 618, A55

Seaton, M. J. 1959, MNRAS, 119, 81

Sekiya, M., Miyama, S. M., & Hayashi, C. 1987, Earth Moon and Planets, 39, 1 Shapiro, P. R., & Kang, H. 1987, ApJ, 318, 32

Shibaike, Y., Okuzumi, S., Sasaki, T., & Ida, S. 2017, ApJ, 846, 81

Shu, F. H. 1991, Physics of Astrophysics, Vol. I (University Science Books) Skrutskie, M. F., Cutri, R. M., Stiening, R., et al. 2006, AJ, 131, 1163 Stelzer, B., & Schmitt, J. H. M. M. 2004, A&A, 418, 687

Szulágyi, J., Masset, F., Lega, E., et al. 2016, MNRAS, 460, 2853 Szulágyi, J., Morbidelli, A., Crida, A., & Masset, F. 2014, ApJ, 782, 65 Szulágyi, J., & Mordasini, C. 2017, MNRAS, 465, L64

Takata, T., & Stevenson, D. J. 1996, Icarus, 123, 404

Tanigawa, T., Ohtsuki, K., & Machida, M. N. 2012, ApJ, 747, 47 Tanigawa, T., & Watanabe, S.-i. 2002, ApJ, 580, 506

Testa, P., Huenemoerder, D. P., Schulz, N. S., & Ishibashi, K. 2008, ApJ, 687, 579 Thalmann, C., Janson, M., Garufi, A., et al. 2016, ApJ, 828, L17

Umebayashi, T., & Nakano, T. 1988, Progress of Theoretical Physics Supplement, 96, 151 Valenti, J. A., Basri, G., & Johns, C. M. 1993, AJ, 106, 2024

Vriens, L., & Smeets, A. H. M. 1980, Phys. Rev. A, 22, 940

Wade, G. A., Bagnulo, S., Drouin, D., Landstreet, J. D., & Monin, D. 2007, MNRAS, 376, 1145 Wagner, K., Follete, K. B., Close, L. M., et al. 2018, ApJ, 863, L8

Walsh, K. J., Morbidelli, A., Raymond, S. N., O’Brien, D. P., & Mandell, A. M. 2011, Nature, 475, 206

Ward, W. R. 1997, Icarus, 126, 261

Ward, W. R., & Canup, R. M. 2010, AJ, 140, 1168

Waters, L. B. F. M., & Waelkens, C. 1998, ARA&A, 36, 233

Whelan, E. T., Huélamo, N., Alcalá, J. M., et al. 2015, A&A, 579, A48 Wright, C. M., Maddison, S. T., Wilner, D. J., et al. 2015, MNRAS, 453, 414

Zel’dovich, Y. B., & Raizer, Y. P. 1967, Physics of shock waves and high-temperature hydrodynamic phenomena

Zhu, Z. 2015, ApJ, 799, 16

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る