リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Development and Applications of Tip-Scan High-Speed Atomic Force Microscopy Combined with Substrate Stretching Device」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Development and Applications of Tip-Scan High-Speed Atomic Force Microscopy Combined with Substrate Stretching Device

詹, 豐嶽 名古屋大学

2023.06.26

概要

学位報告4

別紙4
報 告 番























論文題目
Development and Applications of Tip-Scan High-Speed Atomic
Force Microscopy Combined with Substrate Stretching Device
(基板の一軸伸張機構を有する探針走査型高速原子間力顕微鏡の開発)



豐嶽(CHAN Feng-Yueh)

論 文 内 容 の 要 旨
Nanometer-scale imaging technology with the air of atomic force microscopy
(AFM) unveiled fruitful scientific insight into various areas, including biology,
polymer, tribology, and metrology. Although dynamic imaging processes of both
biological and non-biological processes have been long-standing challenging to the
conventional apparatus, the emergence of high-speed AFM has allowed the direct
observation of nanoscale dynamics processes of samples with subsecond temporal
resolution and is very powerful in the analysis of single-molecule dynamics of
various proteins. In addition, technological developments toward the multifunctionality of high-speed AFM, such as the combination with optical microscopy
to enable more multifaceted analysis, have also been carried out.
One of the developments required to enhance the versatility of high-speed AFM
is the mechanical manipulation of samples because the functions of proteins are
often modulated by mechanical stress from an external environment. Thus, I
developed a tip-scan-type high-speed AFM equipped with a uniaxial stretching
mechanism for the substrate on which the sample is fixed to capture unprecedented
dynamics under mechanical loads. As a demonstration of the application of the
developed device to biological samples, I observed the stress-induced microtubule
rupture process, the change in the affinity of actinin

学位関係

for the curvature of actin fibers, the curvature-sensitive binding affinity of BIN1
protein to the lipid membrane. Further, I applied the technique to non-living
samples and observed morphological changes in latex films formed with polymer
particles under an extreme strain of 140%.
These application studies effectively demonstrate that the high-speed AFM
with uniaxial extension mechanism developed should be a versatile tool for
analyzing nanometer-scale dynamics of samples under controlled mechanical
stress and is expected to provide novel and innovative methods for life science and
materials science.

この論文で使われている画像

参考文献

G. Binnig, C. F. Quate, and C. Gerber, Phys. Rev. Lett. 56, 930 (1986).

B. N. J. Persson, Chem. Phys. Lett. 141, 366 (1987).

Y. Martin, C. C. Williams, and H. K. Wickramasinghe, J. Appl. Phys. 61, 4723 (1998).

G. Meyer and N. M. Amer, Appl. Phys. Lett. 53, 1045 (1988).

S. Alexander, L. Hellemans, O. Marti, J. Schneir, V. Elings, P. K. Hansma, M.

Longmire, and J. Gurley, J. Appl. Phys. 65, 164 (1998).

M. Tortonese, R.C. Barrett, and C. F. Quate, Appl. Phys. Lett. 62, 834 (1993).

M. Rief, M. Gautel, F. Oesterhelt, J. M. Fernandez, and H. E. Gaub, Science 276, 1109

(1997).

R. Garcia, Chem. Soc. Rev. 49, 5850 (2020).

B. R. Neugirg, S. R. Koebley, H C. Schniepp, and A. Fery, Nanoscale 8, 8414 (2016).

10

S. R. Baker, S. Banerjee, K. Bonin, and M. Guthold, Mater. Sci. Eng. C 59, 203—

212 (2016).

11

D. Ahrens, W. Rubner, R. Springer, N. Hampe, J. Gehlen, T. M. Magin, B. Hoffmann,

and R. Merkel, Methods Protoc. 2, 43 (2019).

12

G. Tagiltsev, C. A. Haselwandter, and S. Scheuring, Sci. Adv. 7, eabg9934 (2021).

13

R. Merkel, P. Nassoy, A. Leung, K. Ritchie, and E. Evans, Nature 397, 50 (1999).

14

H. Liu, X. Liang, and K. Nakajima, Jpn. J. Appl. Phys. 59, SN1013 (2020).

15

G. Cortelli, L. Patruno, T. Cramer, B. Fraboni, and S. deMiranda, ACS Appl. Electron.

Mater. (2022).

16

T. Qian, X. Chen, and F. Hang, J. Mech. Behav. Biomed. Mater. 112, 103989 (2020).

17

T. Ando, N. Kodera, E. Takai, D. Maruyama, K. Saito, and A. Toda, Proc. Natl. Acad.

Sci. U. S. A. 98, 12468 (2001).

18

L. M. Picco, L. Bozec, A. Ulcinas, D. J. Engledew, M. Antognozzi, M. A. Horton,

83

and M. J. Miles, Nanotechnology 18, 044030 (2007).

19

G. Schitter, K. J. Astrom, B. E. DeMartini, P. J. Thurner, K. L. Turner, and P. K.

Hansma, IEEE Trans. Control Syst. Technol. 15, 906 (2007).

20

B. J. Kenton, A. J. Fleming, and K. K. Leang, Rev. Sci. Instrum. 82, 123703 (2011).

21

M. Kitazawa, K. Shiotani, and A. Toda, Jpn. J. Appl. Phys. 42, 4844 (2003).

22

T. Ando, T. Uchihashi, and S. Scheuring, Chem. Rev. 114, 3120 (2014).

23

M. G. Ruppert, B. S. Routley, A. J. Fleming, Y. K. Yong, and G. E.

Fantner, Proceedings of Int. Conference on Manipulation, Automation and Robotics

at Small Scales (MARSS), Helsinki, Finland, 1–6 (2019).

24

M. Shibata, T. Uchihashi, T. Ando, and R. Yasuda, Sci. Rep. 5, 8724 (2015).

25

Y. Nishizawa, H. Minato, T. Inui, T. Uchihashi, and D. Suzuki, Langmuir 37, 151

(2021).

26

G. R. Heath, E. Kots, J. L. Robertson, S. Lansky, G. Khelashvili, H. Weinstein, and

S. Scheuring, Nature 594, 385 (2021).

27

Y. Ruan, K. Kao, S. Lefebvre, A. Marchesi, P. -J. Corringer, R. K. Hite, and S.

Scheuring, Proc. Natl. Acad. Sci. U. S. A. A 115, 10333 (2018).

28

T. Uchihashi, Y. Watanabe, Y. Nakazaki, T. Yamasaki, H. Watanabe, T. Maruno, K.

Ishii, S. Uchiyama, C. Song, K. Murata, R. Iino, and T. Ando, Nat. Commun. 9, 2147

(2018).

29

K. Matsuda, M. Sugawa, M. Yamagishi, N. Kodera, and J. Yajima, FEBS Lett. 594,

1237 (2020).

30

S. R. Nasrin, C. Ganser, S. Nishikawa, A.R. Kabir, K. Sada, T. Yamashita, M.

Ikeguchi, T. Uchihashi, H. Hess, and A. Kakugo, Sci. Adv. 7, eabf2211 (2021).

31

K. Winkler, A. Karner, A. Horner, C. Hannesschlaeger, D. Knyazev, C. Siligan, M.

Zimmermann, R. Kuttner, P. Pohl, and J. Preiner, Nanoscale Adv. 2, 3431 (2020).

32

T. Uchiyama, T. Uchihashi, A. Nakamura, H. Watanabe, S. Kaneko, M. Samejima,

84

and K. Igarashi, Proc. Natl. Acad. Sci. U. S. A. 117, 19896 (2020).

33

N. Kodera, M. Sakashita, and T. Ando, Rev. Sci. Instrum. 77, 83704 (2006).

34

T. Ando, T. Uchihashi, and N. Kodera, Annu. Rev. Biophys. 42, 393 (2013).

35

M. G. Ruppert, D. M. Harcombe, M. R. P. Ragazzon, S. O. R. Moheimani, and A. J.

Fleming, Beilstein J. Nanotechnol. 8, 1407 (2017).

36

H. Hölscher and U. D. Schwarz, Int. J. Non. Linear. Mech. 42, 608 (2007).

37

M. Shimizu, C. Okamoto, K. Umeda, S. Watanabe, T. Ando, and N. Kodera, Rev. Sci.

Instrum. 93, 013701 (2022).

38

S. -K. Hung and L. -C. Fu, IEEE Trans. Instrum. Meas. 55, 1648 (2006).

39

M. Balantekin, S. Satır, D. Torello, and F. L. Değertekin, Rev. Sci. Instrum. 85,

123705 (2014).

40

T. Akiyama, U. Staufer, and N. F. deRooij, Appl. Surf. Sci. 210, 18 (2003).

41

J. Otero and M. Puig-Vidal, Proceedings of 2008 IEEE Instrum. Meas. Technol. Conf..

1392–1396 (2008).

42

S. Fukuda, T. Uchihashi, R. Iino, Y. Okazaki, M. Yoshida, K. Igarashi, and T. Ando,

Rev. Sci. Instrum. 84, 73706 (2013).

43

T. Umakoshi, S. Fukuda, R. Iino, T. Uchihashi, and T. Ando, Biochim. Biophys. Acta

- Gen. Subj. 1864, 129325 (2020).

44

Q. Zou, K. K. Leang, E. Sadoun, M. J. Reed, and S. Devasia, Asian J. Control 6, 164

(2008).

45

T. Uchihashi, N. Kodera, and T. Ando, Nat. Protoc. 7, 1193 (2012).

46

Y. -C. Lin, Y. R. Guo, A. Miyagi, J. Levring, R. MacKinnon, and S. Scheuring, Nature

573, 230 (2019).

47

H. Miyata, R. Yasuda, and K. Kinosita, Biochim. Biophys. Acta - Gen. Subj. 1290, 83

(1996).

48

M. Walker, P. Rizzuto, M. Godin, and A. E. Pelling, Sci. Rep. 10, 7696 (2020).

85

49

F. Valle, J. A. DeRose, G. Dietler, M. Kawe, A. Plückthun, and G. Semenza,

Ultramicroscopy 93, 83 (2002).

50

T. D. Brown, J. Biomech. 33, 3 (2000).

51

M. Ao, B. M. Brewer, L. Yang, O. E. Franco Coronel, S. W. Hayward, D. J. Webb,

and D. Li, Sci. Rep. 5, 8334 (2015).

52

E. Hecht, P. Knittel, E. Felder, P. Dietl, B. Mizaikoff, and C. Kranz, Analyst 137,

5208 (2012).

53

M. Walker, M. Godin, and A. E. Pelling, Biomed. Microdevices 20, 43 (2018).

54

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J.

Käs, Biophys. J. 81, 767 (2001).

55

A. M. T Quinlan, L. N. Sierad, A. K. Capulli, L. E. Firstenberg, and K. L. Billiar,

PLOS One 6, e23272 (2011).

56

E. Puntel, L. Deseri, and E. Fried, J. Elast. 105, 137 (2011).

57

A. T. Sepúlveda, R. G. deVilloria, J. C. Viana, A. J. Pontes, B. L. Wardle, and L. A.

Rocha, Nanoscale 5, 4847 (2013).

58

S. Dogru, B. Aksoy, H. Bayraktar, and B. E. Alaca, Polym. Test. 69, 375 (2018).

59

A. Müller, M. C. Wapler, and U. Wallrabe, Soft Matter 15, 779 (2019).

60

I. D. Johnston, D. K. McCluskey, C. K. L. Tan, and M. C. Tracey, J. Micromechanics

Microengineering 24, 35017 (2014).

61

H. Liu, J. Yan, M. Kollosche, S.A. Bentil, and S. Laflamme, Smart Mater. Struct. 29,

105037 (2020).

62

M. E. Janson and M. Dogterom, Biophys. J. 87, 2723 (2004).

63

S. Halldorsson, E. Lucumi, R. Gómez-Sjöberg, and R. M. T. Fleming, Biosens.

Bioelectron. 63, 218 (2015).

64

K. Efimenko, W. E. Wallace, and J. Genzer, J. Colloid Interface Sci. 254, 306 (2002).

65

Y. Berdichevsky, J. Khandurina, A. Guttman, and Y. -H. Lo, Sensors Actuators B

86

Chem. 97, 402 (2004).

66

C. Yu and H. Jiang, Thin Solid Films 519, 818 (2010).

67

K. Efimenko, M. Rackaitis, E. Manias, A. Vaziri, L. Mahadevan, and J. Genzer, Nat.

Mater. 4, 293 (2005).

68

A. Chiche, C. M. Stafford, and J. T. Cabral, Soft Matter 4, 2360 (2008).

69

S. Béfahy, P. Lipnik, T. Pardoen, C. Nascimento, B. Patris, P. Bertrand, and S. Yunus,

Langmuir 26, 3372 (2010).

70

S. Singamaneni and V. V. Tsukruk, Soft Matter 6, 5681 (2010).

71

J. H. L. Beal, A. Bubendorfer, T. Kemmitt, I. Hoek, and W. M. Arnold, Biomicrofluidics

6, 36503 (2012).

72

J. N. Lee, C. Park, and G. M. Whitesides, Anal. Chem. 75, 6544 (2003).

73

K. J. Regehr, M. Domenech, J. T. Koepsel, K. C. Carver, S. J. Ellison-Zelski, W. L.

Murphy, L. A. Schuler, E. T. Alarid, and D. J. Beebe, Lab Chip 9, 2132 (2009).

74

A. Gökaltun, Y. B. Kang, M. L. Yarmush, O. B. Usta, and A. Asatekin, Sci. Rep. 9,

7377 (2019).

75

L. Yu, Front. Biosci. 10, 2848 (2005).

76

F. Rusmini, Z. Zhong, and J. Feijen, Biomacromolecules 8, 1775 (2007).

77

M. Köhler, A. Karner, M. Leitner, V. Hytönen, M. Kulomaa, P. Hinterdorfer, and A.

Ebner, Molecules 19, 12531 (2014).

78

M. González, C.E. Argaraña, and G.D. Fidelio, Biomol. Eng. 16, 67 (1999).

79

C. M .Dundas, D. Demonte, and S. Park, Appl. Microbiol. Biotechnol. 97, 9343

(2013).

80

V. Verma, W. O. Hancock, and J. M. Catchmark, J. Biol. Eng. 2, 14 (2008).

81

Y.- W. Kuo, M. Mahamdeh, Y. Tuna, and J. Howard, Nat. Commun. 13, 3651 (2022).

82

W. Roos, J. Ulmer, S. Gräter, T. Surrey, and J. P. Spatz, Nano Lett. 5, 2630 (2005).

83

C. M. Waterman-Storer and E. D. Salmon, J. Cell Biol. 139, 417 (1997).

87

84

C. L. Wymer, S. A. Wymer, D. J. Cosgrove, and R. J. Cyr, Plant Physiol. 110, 425

(1996).

85

T. Li, J. Biomech. 41, 1722 (2008).

86

H. Felgner, R. Frank, and M. Schliwa, J. Cell Sci. 109, 509 (1996).

87

P. Venier, A. C. Maggs, M. F. Carlier, and D. Pantaloni, J. Biol. Chem. 269, 13353

(1994).

88

H. Hess, J. Howard, and V. Vogel, Nano Lett. 2, 1113 (2002).

89

D. Inoue, B. Mahmot, A. M. R. Kabir, T. I. Farhana, K. Tokuraku, K. Sada, A.

Konagaya, and A. Kakugo, Nanoscale 7, 18054 (2015).

90

F.-Y. Chan, R. Kurosaki, C. Ganser, T. Takeda, and T. Uchihashi, Rev. Sci. Instrum.

93, 113703 (2022).

91

J. Stricker, T. F Alzone, and M. L. Gardel, J. Biomech. 43, 9 (2010).

92

T. Luo, K. Mohan, P. A. Iglesias, and D. N. Robinson, Nat. Mater. 12, 1064 (2013).

93

J. P. Kemp and W. M. Brieher, J. Biol. Chem. 293, 14520 (2018).

94

E. Miller, L. Stubbington, C. Dinet, and M. Staykova, In Advances in Biomembranes

and Lipid Self-Assembl 29, 23– 48 (2019).

95

X. Zhang, X. Hu, H. Lei, J. Hu, and Y. Zhang, Nanoscale 8, 6008 (2016).

96

A. McGough, M. Way, and D. DeRosier, J. Cell Biol. 126, 433 (1994).

97

E. Casal, L. Federici, W. Zhang, J. Fernandez-Recio, E.- M. Priego, R. N. Miguel, J.

B. DuHadaway, G. C. Prendergast, B. F. Luisi, and E. D. Laue, Biochemistry 45,

12917 (2006).

98

M. B. Jensen, V. K. Bhatia, C. C. Jao, J. E. Rasmussen, S. L. Pedersen, K. J. Jensen,

R. Langen, and D. Stamou, J. Biol. Chem. 286, 42603 (2011).

99

L. Al-Qusairi and J. Laporte, Skelet. Muscle 1, 26 (2011).

100

S. Gowrisankaran, Z. Wang, D.G. Morgan, I. Milosevic, and C. Mim, J. Mol. Biol.

432, 1235 (2020).

88

101

K. Ge, J. Duhadaway, D. Sakamuro, R. Wechsler-Reya, C. Reynolds, and G. C.

Prendergast, Int. J. Cancer 85, 376 (2000).

102

B. J. Peter, H. M. Kent, I. G. Mills, Y. Vallis, P. J. G. Butler, P. R. Evans, and H. T.

McMahon, Science 303, 495 (2004).

103

P. L. DeJager, G. Srivastava, K. Lunnon, J. Burgess, L. C. Schalkwyk, L. Yu, M. L.

Eaton, B. T. Keenan, J. Ernst, C. McCabe, A. Tang, T. Raj, J. Replogle, W. Brodeur,

S. Gabriel, H.S. Chai, C. Younkin, S. G. Younkin, F. Zou, M. Szyf, C. B. Epstein, J.

A. Schneider, B. E. Bernstein, A. Meissner, N. Ertekin-Taner, L. B. Chibnik, M.

Kellis, J. Mill, and D. A. Bennett, Nat. Neurosci. 17, 1156 (2014).

104

K. Fujise, S. Noguchi, and T. Takeda, Int. J. Mol. Sci. 23, 6274 (2022).

105

T. Wu and T. Baumgart, Biochemistry 53, 7297 (2014).

106

K. Fujise, M. Okubo, T. Abe, H. Yamada, I. Nishino, S. Noguchi, K. Takei, and T.

Takeda, J. Biol. Chem. 296, 100077 (2021).

107

L.-L. Li, Q.-J. Guo, H -Y. Lou, J.-H. Liang, Y. Yang, X. Xing, H.-T. Li, J. Han, S.

Shen, H. Li, H. Ye, H. Di Wu, B. Cui, and S.-Q. Wang, Nano Lett. 20, 6387 (2020).

108

D. Kuscer, O. Noshchenko, H.Uršič, and B. Malič, J. Am. Ceram. Soc. 96, 2714

(2013).

109

E. Carretti, L. Dei, and P. Baglioni, Langmuir 19, 7867 (2003).

110

A. F. Routh, Reports Prog. Phys. 76, 046603 (2013).

111

A. Zosel and G. Ley, Macromolecules 26, 2222 (1993).

112

T. Kureha, S. Hiroshige, D. Suzuki, J. Sawada, D. Aoki, T. Takata, and M. Shibayama,

Langmuir 36, 4855 (2020).

113

J. A. Brydson, Plastics Materials, 7th ed. (Elsevier, 1999).

114

A. Can, S. Hoeppener, P. Guillet, J.-F. Gohy, R. Hoogenboom, and U. S. Schubert,

J. Polym. Sci. Part A Polym. Chem. 49, 3681 (2011).

89

115

S. Hiroshige, T. Kureha, D. Aoki, J. Sawada, D. Aoki, T. Takata, and D. Suzuki,

Chem. - A Eur. J. 23, 8405 (2017).

116

C. Ganser and T. Uchihashi, Nanoscale 11, 125 (2019).

117

A. Notargiacomo, V. Foglietti, E. Cianci, G. Capellini, M. Adami, P. Faraci, F.

Evangelisti, and C. Nicolini, Nanotechnology 10, 458 (1999).

118

M. S. Bull, R. M. A. Sullan, H. Li, and T. T. Perkins, ACS Nano 8, 4984 (2014).

119

K. Yamanaka, H. Ogiso, and O. Kolosov, Appl. Phys. Lett. 64, 178 (1994).

120

S. B. Andersson and L. Y. Pao, Proceedings of 2012 Am. Control Conf., 2485–2490

(2012).

121

Y. K. Yong, A. Bazaei, S. O. R. Moheimani, and F. Allgower, Proceedings of 2012

2012 IEEE/ASME Int. Conf. Adv. Intell. Mechatronics, 456–461 (2012).

122

M. Maiwald, C. Werner, V. Zoellmer, and M. Busse, Sensors Actuators A Phys. 162,

198 (2010).

123

A. B. Churnside and T. T. Perkins, FEBS Lett. 588, 3621 (2014).

124

W. H. Liang, Q. Li, K. M. Rifat Faysal, S. J. King, A. Gopinathan, and J. Xu, Biophys.

J. 110, 2229 (2016).

125

C. Leduc, K. Padberg-Gehle, V. Varga, D. Helbing, S. Diez, and J. Howard, Proc.

Natl. Acad. Sci. U. S. A. 109, 6100 (2012).

126

Y. Takahashi, A. I. Shevchuk, P. Novak, Y. Zhang, N. Ebejer, J. V. Macpherson, P. R.

Unwin, A. J. Pollard, D. Roy, C. A. Clifford, H. Shiku, T. Matsue, D. Klenerman,

and Y. E. Korchev, Angew. Chemie. Int. Ed. 123, 9812 (2011).

90

Acknowledgement

This thesis can only be finished with the help of everyone I met along this journey.

Firstly, I want to thank my supervisor Prof. Takayuki Uchihashi for his enormous support

in research and living in Japan and guided me toward a meaningful destination.

I want to thank Prof. Christian Ganser and Dr. Shigetaka Nishiguchi (ExCELLs, NINS)

for their thoughtful advice throughout the study. The discussion with you is always

refreshing.

I want to thank Prof. Tadayuki Ogawa (The University of Tokyo) for his precious advice

on the microtubule experiment and Prof. Tetsuya Takeda (Okayama University) for his

crucial help on the BIN1 experiment.

I want to thank Prof. Ryota Iino, Prof. Akihiro Otomo and Dr. Akasit Visootsat (IMS,

NINS) for supporting tubulin preparation and academic discussion.

I want to thank Prof. Chi-Ying Lin (National Taiwan University of Science and

Technology), Prof. En-Te Hwu (Technical University of Denmark), and Prof. Ing-Shouh

Hwang (Academia Sinica) for their encouragement. Your words are always warm and

motivational.

I want to thank Prof. Michio Homma and Dr. Yuichiro Nishizawa for their enthusiastic

and altruistic help.

To all the lab members past and present in D Lab at Nagoya University, thank you for all

the help with the life and study in Japan.

I want to thank the Ministry of Education of Taiwan for the aid for studying in Japan.

To my family, Mom, Dad, Feng-Tze, Yu-Wen, I appreciate your understanding and belief

as well as nourishing my mind.

Finally, Shu-Wen Wang, thank you for always being with me. There is never enough

words to express my appreciation to every challenge we have overcome together.

Thank you.

91

Publication List

1. Feng-Yueh Chan, Ryo Kurosaki, Christian Ganser, Tetsuya Takeda, and Takayuki

Uchihashi , "Tip-scan high-speed atomic force microscopy with a uniaxial substrate

stretching device for studying dynamics of biomolecules under mechanical stress",

Review of Scientific Instruments 93, 113703 (2022), DOI: 10.1063/5.0111017

92

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る