リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「3D osteogenic differentiation of human iPSCs reveals the role of TGFβ signal in the transition from progenitors to osteoblasts and osteoblasts to osteocytes」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

3D osteogenic differentiation of human iPSCs reveals the role of TGFβ signal in the transition from progenitors to osteoblasts and osteoblasts to osteocytes

Kawai, Shunsuke Sunaga, Junko Nagata, Sanae Nishio, Megumi Fukuda, Masayuki Kamakura, Takeshi Sun, Liping Jin, Yonghui Sakamoto, Satoko Watanabe, Akira Matsuda, Shuichi Adachi, Taiji Toguchida, Junya 京都大学 DOI:10.1038/s41598-023-27556-w

2023.01.19

概要

Although the formation of bone-like nodules is regarded as the differentiation process from stem cells to osteogenic cells, including osteoblasts and osteocytes, the precise biological events during nodule formation are unknown. Here we performed the osteogenic induction of human induced pluripotent stem cells using a three-dimensional (3D) culture system using type I collagen gel and a rapid induction method with retinoic acid. Confocal and time-lapse imaging revealed the osteogenic differentiation was initiated with vigorous focal proliferation followed by aggregation, from which cells invaded the gel. Invading cells changed their morphology and expressed osteocyte marker genes, suggesting the transition from osteoblasts to osteocytes. Single-cell RNA sequencing analysis revealed that 3D culture-induced cells with features of periosteal skeletal stem cells, some of which expressed TGFβ-regulated osteoblast-related molecules. The role of TGFβ signal was further analyzed in the transition from osteoblasts to osteocytes, which revealed that modulation of the TGFβ signal changed the morphology and motility of cells isolated from the 3D culture, suggesting that the TGFβ signal maintains the osteoblastic phenotype and the transition into osteocytes requires down-regulation of the TGFβ signal.

この論文で使われている画像

参考文献

1. Salhotra, A., Shah, H. N., Levi, B. & Longaker, M. T. Mechanisms of bone development and repair. Nat. Rev. Mol. Cell Biol. 21,

696–711. https://​doi.​org/​10.​1038/​s41580-​020-​00279-w (2020).

2. Humphreys, P. A. et al. Developmental principles informing human pluripotent stem cell differentiation to cartilage and bone.

Semin. Cell Dev. Biol. 127, 17–36. https://​doi.​org/​10.​1016/j.​semcdb.​2021.​11.​024 (2022).

3. Lee, G. et al. Isolation and directed differentiation of neural crest stem cells derived from human embryonic stem cells. Nat. Biotechnol. 25, 1468–1475. https://​doi.​org/​10.​1038/​nbt13​65 (2007).

4. Loh, K. M. et al. Mapping the pairwise choices leading from pluripotency to human bone, heart, and other mesoderm cell types.

Cell 166, 451–467. https://​doi.​org/​10.​1016/j.​cell.​2016.​06.​011 (2016).

5. Yamada, D. et al. Induction and expansion of human PRRX1(+) limb-bud-like mesenchymal cells from pluripotent stem cells.

Nat. Biomed. Eng. 5, 926–940. https://​doi.​org/​10.​1038/​s41551-​021-​00778-x (2021).

6. Ambrosi, T. H. et al. Distinct skeletal stem cell types orchestrate long bone skeletogenesis. Elife 10, 1. https://d

​ oi.o

​ rg/1​ 0.7​ 554/e​ Life.​

66063 (2021).

7. Long, F. Building strong bones: Molecular regulation of the osteoblast lineage. Nat. Rev. Mol. Cell Biol. 13, 27–38. https://​doi.​org/​

10.​1038/​nrm32​54 (2011).

8. Robling, A. G. & Bonewald, L. F. The osteocyte: New insights. Annu. Rev. Physiol. 82, 485–506. https://​doi.​org/​10.​1146/​annur​

ev-​physi​ol-​021119-​034332 (2020).

9. Qin, L., Liu, W., Cao, H. & Xiao, G. Molecular mechanosensors in osteocytes. Bone Res. 8, 23. https://​doi.​org/​10.​1038/​s41413-​020-​

0099-y (2020).

10. Dallas, S. L. & Bonewald, L. F. Dynamics of the transition from osteoblast to osteocyte. Ann. NY Acad. Sci. 1192, 437–443. https://​

doi.​org/​10.​1111/j.​1749-​6632.​2009.​05246.x (2010).

11. Franz-Odendaal, T. A., Hall, B. K. & Witten, P. E. Buried alive: How osteoblasts become osteocytes. Dev. Dyn. 235, 176–190. https://​

doi.​org/​10.​1002/​dvdy.​20603 (2006).

12. Kim, J. & Adachi, T. Cell-fate decision of mesenchymal stem cells toward osteocyte differentiation is committed by spheroid culture.

Sci. Rep. 11, 13204. https://​doi.​org/​10.​1038/​s41598-​021-​92607-z (2021).

13. Mizuno, M. & Kuboki, Y. Osteoblast-related gene expression of bone marrow cells during the osteoblastic differentiation induced

by type I collagen. J. Biochem. 129, 133–138. https://​doi.​org/​10.​1093/​oxfor​djour​nals.​jbchem.​a0028​24 (2001).

14. Sudo, H., Kodama, H. A., Amagai, Y., Yamamoto, S. & Kasai, S. In vitro differentiation and calcification in a new clonal osteogenic

cell line derived from newborn mouse calvaria. J. Cell Biol. 96, 191–198. https://​doi.​org/​10.​1083/​jcb.​96.1.​191 (1983).

15. Matthews, B. G. et al. Enhanced osteoblastogenesis in three-dimensional collagen gels. Bonekey Rep. 3, 560. https://​doi.​org/​10.​

1038/​bonek​ey.​2014.​55 (2014).

16. Uchihashi, K., Aoki, S., Matsunobu, A. & Toda, S. Osteoblast migration into type I collagen gel and differentiation to osteocyte-like

cells within a self-produced mineralized matrix: A novel system for analyzing differentiation from osteoblast to osteocyte. Bone

52, 102–110. https://​doi.​org/​10.​1016/j.​bone.​2012.​09.​001 (2013).

17. Kawai, S. et al. In vitro bone-like nodules generated from patient-derived iPSCs recapitulate pathological bone phenotypes. Nat.

Biomed. Eng. 3, 558–570. https://​doi.​org/​10.​1038/​s41551-​019-​0410-7 (2019).

18. Kato, Y., Windle, J. J., Koop, B. A., Mundy, G. R. & Bonewald, L. F. Establishment of an osteocyte-like cell line, MLO-Y4. J. Bone

Miner. Res 12, 2014–2023. https://​doi.​org/​10.​1359/​jbmr.​1997.​12.​12.​2014 (1997).

19. Esposito, A., Wang, L., Li, T., Miranda, M. & Spagnoli, A. Role of Prx1-expressing skeletal cells and Prx1-expression in fracture

repair. Bone 139, 115521. https://​doi.​org/​10.​1016/j.​bone.​2020.​115521 (2020).

Scientific Reports |

Vol:.(1234567890)

(2023) 13:1094 |

https://doi.org/10.1038/s41598-023-27556-w

12

www.nature.com/scientificreports/

20. Duchamp de Lageneste, O. et al. Periosteum contains skeletal stem cells with high bone regenerative potential controlled by

Periostin. Nat. Commun. 9, 773. https://​doi.​org/​10.​1038/​s41467-​018-​03124-z (2018).

21. Debnath, S. et al. Discovery of a periosteal stem cell mediating intramembranous bone formation. Nature 562, 133–139. https://​

doi.​org/​10.​1038/​s41586-​018-​0554-8 (2018).

22. Wang, X. M., Liu, X. M., Wang, Y. & Chen, Z. Y. Activating transcription factor 3 (ATF3) regulates cell growth, apoptosis, invasion and collagen synthesis in keloid fibroblast through transforming growth factor beta (TGF-beta)/SMAD signaling pathway.

Bioengineered 12, 117–126. https://​doi.​org/​10.​1080/​21655​979.​2020.​18604​91 (2021).

23. Wang, H., Leinwand, L. A. & Anseth, K. S. Roles of transforming growth factor-beta1 and OB-cadherin in porcine cardiac valve

myofibroblast differentiation. FASEB J. 28, 4551–4562. https://​doi.​org/​10.​1096/​fj.​14-​254623 (2014).

24. Han, M. S., Kim, J. E., Shin, H. I. & Kim, I. S. Expression patterns of betaig-h3 in chondrocyte differentiation during endochondral

ossification. Exp. Mol. Med. 40, 453–460. https://​doi.​org/​10.​3858/​emm.​2008.​40.4.​453 (2008).

25. Elsafadi, M. et al. Transgelin is a TGFbeta-inducible gene that regulates osteoblastic and adipogenic differentiation of human

skeletal stem cells through actin cytoskeleston organization. Cell Death Dis. 7, 2321. https://d

​ oi.o

​ rg/1​ 0.1​ 038/c​ ddis.2​ 016.1​ 96 (2016).

26. Brum, A. M. et al. Identification of chloride intracellular channel protein 3 as a novel gene affecting human bone formation. JBMR

Plus 1, 16–26. https://​doi.​org/​10.​1002/​jbm4.​10003 (2017).

27. Gharibi, B. et al. Gene expression responses to mechanical stimulation of mesenchymal stem cells seeded on calcium phosphate

cement. Tiss. Eng. Part A 19, 2426–2438. https://​doi.​org/​10.​1089/​ten.​tea.​2012.​0623 (2013).

28. Low, J. Y. & Nicholson, H. D. Emerging role of polymerase-1 and transcript release factor (PTRF/ Cavin-1) in health and disease.

Cell Tissue Res. 357, 505–513. https://​doi.​org/​10.​1007/​s00441-​014-​1964-z (2014).

29. Vaidya, M. et al. Osteoblast-specific overexpression of amphiregulin leads to transient increase in femoral cancellous bone mass

in mice. Bone 81, 36–46. https://​doi.​org/​10.​1016/j.​bone.​2015.​06.​012 (2015).

30. Iwata, T. et al. Effects of overexpression of basic helix-loop-helix transcription factor Dec1 on osteogenic and adipogenic differentiation of mesenchymal stem cells. Eur. J. Cell. Biol. 85, 423–431. https://​doi.​org/​10.​1016/j.​ejcb.​2005.​12.​007 (2006).

31. Subramaniam, M., Pitel, K. S., Bruinsma, E. S., Monroe, D. G. & Hawse, J. R. TIEG and estrogen modulate SOST expression in the

murine skeleton. J. Cell Physiol. 233, 3540–3551. https://​doi.​org/​10.​1002/​jcp.​26211 (2018).

32. Gewartowska, O. et al. Cytoplasmic polyadenylation by TENT5A is required for proper bone formation. Cell Rep. 35, 109015.

https://​doi.​org/​10.​1016/j.​celrep.​2021.​109015 (2021).

33. Tanaka, S. & Matsumoto, T. Sclerostin: from bench to bedside. J. Bone Miner. Metab. 39, 332–340. https://​doi.​org/​10.​1007/​s00774-​

020-​01176-0 (2021).

34. Prideaux, M. et al. Isolation of osteocytes from human trabecular bone. Bone 88, 64–72. https://​doi.​org/​10.​1016/j.​bone.​2016.​04.​

017 (2016).

35. Noda, S. et al. Effect of cell culture density on dental pulp-derived mesenchymal stem cells with reference to osteogenic differentiation. Sci. Rep. 9, 5430. https://​doi.​org/​10.​1038/​s41598-​019-​41741-w (2019).

36. Mechiche Alami, S., Gangloff, S. C., Laurent-Maquin, D., Wang, Y. & Kerdjoudj, H. Concise review. In vitro formation of bone-like

nodules sheds light on the application of stem cells for bone regeneration. Stem Cells Transl. Med. 5, 1587–1593. https://​doi.​org/​

10.​5966/​sctm.​2015-​0413 (2016).

37. Cho, M. I., Matsuda, N., Lin, W. L., Moshier, A. & Ramakrishnan, P. R. In vitro formation of mineralized nodules by periodontal

ligament cells from the rat. Calcif. Tissue Int. 50, 459–467. https://​doi.​org/​10.​1007/​BF002​96778 (1992).

38. Bellows, C. G., Aubin, J. E., Heersche, J. N. & Antosz, M. E. Mineralized bone nodules formed in vitro from enzymatically released

rat calvaria cell populations. Calcif. Tissue Int. 38, 143–154. https://​doi.​org/​10.​1007/​BF025​56874 (1986).

39. Kim, J. & Adachi, T. Cell condensation triggers the differentiation of osteoblast precursor cells to osteocyte-like cells. Front. Bioeng.

Biotechnol. 7, 288. https://​doi.​org/​10.​3389/​fbioe.​2019.​00288 (2019).

40. Chen, X., Wang, L., Zhao, K. & Wang, H. Osteocytogenesis: Roles of physicochemical factors, collagen cleavage, and exogenous

molecules. Tissue Eng. Part B Rev. 24, 215–225. https://​doi.​org/​10.​1089/​ten.​teb.​2017.​0378 (2018).

41. Lu, Y. et al. Live imaging of type I collagen assembly dynamics in osteoblasts stably expressing GFP and mCherry-tagged collagen

constructs. J. Bone Miner. Res. 33, 1166–1182. https://​doi.​org/​10.​1002/​jbmr.​3409 (2018).

42. Shiflett, L. A. et al. Collagen dynamics during the process of osteocyte embedding and mineralization. Front. Cell Dev. Biol. 7, 178.

https://​doi.​org/​10.​3389/​fcell.​2019.​00178 (2019).

43. Ayturk, U. M. et al. Single-Cell RNA sequencing of calvarial and long-bone endocortical cells. J. Bone Miner. Res. 35, 1981–1991.

https://​doi.​org/​10.​1002/​jbmr.​4052 (2020).

44. Yoshioka, H. et al. Single-cell RNA-sequencing reveals the breadth of osteoblast heterogeneity. JBMR Plus 5, e10496. https://​doi.​

org/​10.​1002/​jbm4.​10496 (2021).

45. He, J. et al. Dissecting human embryonic skeletal stem cell ontogeny by single-cell transcriptomic and functional analyses. Cell

Res. 31, 742–757. https://​doi.​org/​10.​1038/​s41422-​021-​00467-z (2021).

46. Nakayama, M. et al. Single-cell RNA sequencing unravels heterogeneity of skeletal progenitors and cell-cell interactions underlying

the bone repair process. Regen. Ther. 21, 9–18. https://​doi.​org/​10.​1016/j.​reth.​2022.​05.​001 (2022).

47. Anderson, H. J. et al. Cell-controlled dynamic surfaces for skeletal stem cell growth and differentiation. Sci. Rep. 12, 8165. https://​

doi.​org/​10.​1038/​s41598-​022-​12057-z (2022).

48. Roelen, B. A. & Dijke, P. Controlling mesenchymal stem cell differentiation by TGFBeta family members. J. Orthop. Sci. 8, 740–748.

https://​doi.​org/​10.​1007/​s00776-​003-​0702-2 (2003).

49. Maeda, S., Hayashi, M., Komiya, S., Imamura, T. & Miyazono, K. Endogenous TGF-beta signaling suppresses maturation of

osteoblastic mesenchymal cells. EMBO J. 23, 552–563. https://​doi.​org/​10.​1038/​sj.​emboj.​76000​67 (2004).

50. Okita, K. et al. A more efficient method to generate integration-free human iPS cells. Nat. Methods 8, 409–412. https://​doi.​org/​10.​

1038/​nmeth.​1591 (2011).

51. Oceguera-Yanez, F. et al. Engineering the AAVS1 locus for consistent and scalable transgene expression in human iPSCs and their

differentiated derivatives. Methods 101, 43–55. https://​doi.​org/​10.​1016/j.​ymeth.​2015.​12.​012 (2016).

52. Eiraku, M. et al. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472, 51–56. https://​doi.​org/​10.​

1038/​natur​e09941 (2011).

Acknowledgements

We thank Drs. S. Tamaki, and H. Yoshitomi for invaluable comments and discussion, Dr. K. Woltjen for providing GFP-labelled iPS cell line, and Dr. P. Karagiannis for proofreading the manuscript. Preparation of the tissue

slides and staining was supported by the Applied Medical Research (Osaka, Japan). This study was supported

by iPS Academia Japan, Inc., to S.K., by a grant-in-aid for the Acceleration Program for Intractable Disease

Research Utilizing Disease Specific iPS Cells (Japan Agency if) to T.A, S.M, and J.T., the Core Center for iPS Cell

Research (AMED) to S.K. and J.T., the Centers for Clinical Application Research on Specific Disease/Organ (type

B) grants (AMED) to J.T., and the iPS Cell Research Fund to J.T. These funders had no role in the study design,

data collection and analysis, decision to publish, or preparation of the manuscript.

Scientific Reports |

(2023) 13:1094 |

https://doi.org/10.1038/s41598-023-27556-w

13

Vol.:(0123456789)

www.nature.com/scientificreports/

Author contributions

S.K. and J.T. designed the research and wrote the manuscript. J.S. performed the imaging studies and made

experimental materials. S.N. and M.N. performed the in vitro and in vivo experiments. T.K. and L.S. assisted with

the in vitro experiments. S.S. and A.W. performed the scRNA sequencing experiments. M.F. and Y.J. analyzed the

scRNA sequencing data. S.M. and T.A. advised on the project. All authors provided feedback on the manuscript.

Competing interests The authors declare no competing interests.

Additional information

Supplementary Information The online version contains supplementary material available at https://​doi.​org/​

10.​1038/​s41598-​023-​27556-w.

Correspondence and requests for materials should be addressed to S.K. or J.T.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and

institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International

License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons licence, and indicate if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the

material. If material is not included in the article’s Creative Commons licence and your intended use is not

permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2023

Scientific Reports |

Vol:.(1234567890)

(2023) 13:1094 |

https://doi.org/10.1038/s41598-023-27556-w

14

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る