リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「ラットの口腔顔面の筋の自己受容感覚を伝達する三叉神経上核ニューロンの遠心性および求心性の神経連絡」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

ラットの口腔顔面の筋の自己受容感覚を伝達する三叉神経上核ニューロンの遠心性および求心性の神経連絡

井上, 美沙樹 大阪大学 DOI:10.18910/87952

2022.03.24

概要

【背景】
 三叉神経上核(Su5)は閉口筋筋紡錘(JCMS)に生ずる自己受容感覚(JCMS感覚)が入力し、三叉神経運動核(Mo5)に投射して顎反射に関わっている。私の研究室では、JCMS感覚を伝達するSu5は、視床後内側腹側核尾腹内側縁(VPMcvm)に強く投射し、視床髄板内核の一つであるoval paracentral nucleus(OPC)に弱い投射をしていること、さらにVPMcvmは、二次体性感覚野(S2)最吻側部に接してその吻腹側に位置する顆粒性島皮質(GI)背側部(dGIrvs2)に、OPCは一次体性感覚野(S1)吻側部とS2吻側部、GI吻側部に投射することを明らかにしている。この結果は、JCMS感覚が運動や感覚機能よりも情動機能により強く関与することを示唆している。しかし、Su5の上位脳との連絡やその顎反射との関連は完全には解明されていない。その解明は、JCMS感覚が脳全体で担っている機能の理解に非常に重要である。そこで、神経トレーサーを用いてSu5の遠心性と求心性の神経連絡を脳全体(ただし小脳を除く)で解明することを目的とした。

【方法】
 Wistar系の雄ラットを使用した。ラットの左側の咬筋神経に双極フック電極を装着し、脳定位固定装置に固定した。Su5を狙って、2.0Μクエン酸カリウムを封入した微小ガラス電極を橋内に挿入した。咬筋神経の電気刺激と受動的開口に対する応答を電極から記録して、Su5を同定した。Su5に、実験1では順行性トレーサーであるビオチン化デキストランアミン(BDA)を、実験2では逆行性トレーサーであるコレラ毒素Bサブユニット(CTb)を電気泳動で注入した。注入の5〜7日後に深麻酔ドで4%パラホルムアルデヒド溶液にて灌流固定し、全脳を摘出し、連続冠状断凍結切片を作成した。BDA注入ケースではABC反応を、CTb注入ケースでは抗体反応とABC反応を経てDABにて卜レーサーを可視化し、標本を作成した。光学顕微鏡に接続した描画装置を用いて、脳構造、BDAの注入部位、BDA標識された軸索終末、CTbの注入部位、CTb標識された神経細胞体を描出した。

【結果】
(実験1)BDA標識された軸索終末の分布
 順行性に標識された軸索終末が、主に、注入部位に対し反対側の(または反対側優位だが両側の)Su5、basilar pontine nuclei、橋網様核、deep mesencephalic nucleus、上丘、VPMcvm、視床束傍核、不確帯、視床下部外側部に認められた。また、注入部位に対し同側の(または同側優位だが両側の)Mo5と三叉神経間域、三叉神経吻側亜核、延髄背側網様体、舌下神経核にも認められた。

(実験2)CTb標識された神経細胞体の分布
 逆行性に標識された神経細胞体が、主に、注入部位に対して反対側優位だが両側の(または反対側の)SI、S2、GI、Su5に、また同側の(または同側優位だが両側の)背側脚皮質、分界条床核、扁桃体中心核、視床下部外側部、parasubthalamic nucleus、三叉神経中脳路核、結合腕傍核、三叉神経傍域、三叉神経吻側亜核と尾側亜核、延髄背側網様体に認められた。

BDA標識された軸索終末とCTb標識された細胞体の両方が認められた部位
 標識された軸索終末と細胞体の両方が、注入部位に対し同側の橋網様核、反対側のSu5、両側の三叉神経間域、同側の二叉神経吻側亜核、両側の二叉神経傍域、同側の孤束核、両側の延髄背側網様体、同側の二叉神経傍核と三叉神経尾側亜核に認められた。

【考察】
 本研究で、小脳を除く脳全体におけるSu5の遠心性と求心性の神経連絡が、ラットで詳細に解明された。Su5は複数の脳部位に出力し、複数の脳部位からの入力を受けていたが、これらの脳部位のいくつかは、Su5からの入力を受け、かつ、Su5に出力していた。Su5と脳の吻側部との関係は、Su5は感覚野と運動野、島皮質背側部(顆粒性島皮質)、背側脚皮質などの大脳皮質からの入力を受け、分界条床核、視床下部外側部、視床下部室傍核、扁桃体中心核などの辺縁系や自律機能に関わる皮質構造からの入力も受けた。Su5と脳の尾側部との関係は、口腔顎顔面の運動を制御している脳幹内の部位と強い双方向性の神経連絡を持っていた。ラットのSu5は、全ての末梢からの入力情報のうち、JCMS感覚のみが特異的に入力することがわかっている。よって本研究により、口腔顎顔面の運動は、感覚機能や運動機能、情動機能、自律機能と強い関連を持っているSu5を経由して上位脳に伝達されるJCMS感覚によって、フィードバック制御を受けている可能性が高いことが示唆された。

この論文で使われている画像

参考文献

Akhter F, Haque T, Sato F, Kato T, Ohara H, Fujio T, Tsutsumi K, Uchino K, Sessle BJ, Yoshida A (2014) Projections from the dorsal peduncular cortex to the trigeminal subnucleus caudalis (medullary dorsal horn) and other lower brainstem areas in rats. Neuroscience 266:23–37

Alden M, Besson JM, Bernard JF (1994) Organization of the efferent projections from the pontine parabrachial area to the bed nucleus of the stria terminalis and neighboring regions: a PHA-L study in the rat. J Comp Neurol 341:289–314

Altschuler SM, Bao XM, Bieger D, Hopkins DA, Miselis RR (1989) Viscerotopic representation of the upper alimentary tract in the rat: sensory ganglia and nuclei of the solitary and spinal trigeminal tracts. J Comp Neurol 283:248–268

Arts MPM, Bemelmans FFJ, Cools AR (1998) Role of the retrorubral nucleus in striatally elicited orofacial dyskinesia in cats: effects of muscimol and bicuculline. Psychopharmacol 140:150–156

Åström KE (1953) On the central course of afferent fibres in the trigeminal, facial, glossopharyngeal, and vagal nerves and their nuclei in the mouse. Acta Physiol Scand 39: Suppl 106:209–320

Augustine JR (1985) The insular lobe in primates including humans. Neurol Res 7:2–10 Augustine JR (1996) Circuitry and functional aspects of the insular lobe in primates including humans. Brain Res Brain Res Rev 22:229–244

Avivi-Arber L, Lee JC, Sessle BJ (2010) Effects of incisor extraction on jaw and tongue motor representations within face sensorimotor cortex of adult rats. J Comp Neurol 518:1030–1045

Berendse HW, Groenewegen HJ (1991) Restricted cortical termination fields of the midline and intralaminar thalamic nuclei in the rat. Neuroscience 42:73–102

Bickford ME, Hall WC (1992) The nigral projection to predorsal bundle cells in the superior colliculus of the rat. J Comp Neurol 319:11–33

Bienkowski MS, Rinaman L (2013) Common and distinct neural inputs to the medial central nucleus of the amygdala and anterior ventrolateral bed nucleus of stria terminalis in rats. Brain Struct Funct 218:187–208

Brodal P (1982) The cerebropontocerebellar pathway: Salient features of its organization. Exp Brain Res [Suppl.] 6:108–133

Campbell SK, Parker TD, Welker W (1974) Somatotopic organization of the external cuneate nucleus in albino rats. Brain Res 77:1–23

Chang Z, Haque T, Iida C, Seki S, Sato F, Kato T, Uchino K, Ono T, Nakamura M, Bae YC, Yoshida A (2009) Distribution of premotoneurons for jaw-closing and jaw-opening motor nucleus receiving contacts from axon terminals of primary somatosensory cortical neurons in rats. Brain Res 1275:43–53

Coote JH (2005) A role for the paraventricular nucleus of the hypothalamus in the autonomic control of heart and kidney. Exp Physiol 90:169–173

Cunningham Jr ET, Sawchenko PE (2000) Dorsal medullary pathways subserving oromotor reflexes in the rat: implications for the central neural control of swallowing. J Comp Neurol 417:448–466

Dong HW, Swanson LW (2003) Projections from the rhomboid nucleus of the bed nuclei of the stria terminalis: implications for cerebral hemisphere regulation of ingestive behaviors. J Comp Neurol 463:434–472

Donga R, Lund JP, Veilleux D (1990) An electrophysiological study of trigeminal commissural interneurons in the anaesthetized rabbit. Brain Res 515:351–354

Donoghue JP, Parham C (1983) Afferent connections of the lateral agranular field of the rat motor cortex. J Comp Neurol 217:390–404

Donoghue JP, Wise SP (1982) The motor cortex of the rat: cytoarchitecture and microstimulation mapping. J Comp Neurol 212:76–88

Dubner R, Sessle BJ, Storey AT (1978) The Neural Basis of Oral and Facial Function. Plenum Press, New York

Fujio T, Sato F, Tachibana Y, Kato T, Tomita A, Higashiyama K, Ono T, Maeda Y, Yoshida A (2016) Revisiting the supratrigeminal nucleus in the rat. Neuroscience 324:307–320

Gauriau C, Bernard JF (2004) Posterior triangular thalamic neurons convey nociceptive messages to the secondary somatosensory and insular cortices in the rat. J Neurosci 24:752– 761

Goldberg LJ, Nakamura Y (1968) Lingually induced inhibition of masseteric motoneurones. Experientia 24:371–373

Goto M, Swanson LW (2004) Axonal projections from the parasubthalamic nucleus. J Comp Neurol 469:581–607

Graeff FG, Guimarães FS, De Andrade TG, Deakin JF (1996) Role of 5-HT in stress, anxiety, and depression. Pharmacol Biochem Behav 54:129-141

Hanamori T, Kunitake T, Kato K, Kannan H (1998a) Neurons in the posterior insular cortex are responsive to gustatory stimulation of the pharyngolarynx, baroreceptor and chemoreceptor stimulation, and tail pinch in rats. Brain Res 785:97–106

Hanamori T, Kunitake T, Kato K, Kannan H (1998b) Responses of neurons in the insular cortex to gustatory, visceral, and nociceptive stimuli in rats. J Neurophysiol 79:2535–2545

Haque T, Akhter F, Kato T, Sato F, Takeda R, Higashiyama K, Moritani M, Bae YC, Sessle BJ, Yoshida A (2012) Somatotopic direct projections from orofacial areas of secondary somatosensory cortex to trigeminal sensory nuclear complex in rats. Neuroscience 219:214–233

Hattox AM, Priest CA, Keller A (2002) Functional circuitry involved in the regulation of whisker movements. J Comp Neurol 442:266–276

Herman JP, Cullinan WE (1997) Neurocircuitry of stress: central control of the hypothalamo- pituitary-adrenocortical axis. Trends Neurosci 20:78–84

Hicks RR, Huerta MF (1991) Differential thalamic connectivity of rostral and caudal parts of cortical area Fr2 in rats. Brain Res 568:325–329

Huerta MF, Harting JK (1984) Connectional organization of the superior colliculus. Trends Neurosci 7:286–289

Ikenoue E, Akhter F, Tsutsumi Y, Sato F, Ohara H, Uchino K, Furuta T, Tachibana Y, Yoshida A (2018) Transcortical descending pathways through granular insular cortex conveying orofacial proprioception. Brain Res 1687:11–19

Ito S (1992) Multiple projection of vagal non-myelinated afferents to the anterior insular cortex in rats. Neurosci Lett 148:151–154

Ito H, Yanase M, Yamashita A, Kitabatake C, Hamada A, Suhara Y, Narita M, Ikegami D, Sakai H, Yamazaki M, Narita M (2013) Analysis of sleep disorders under pain using an optogenetic tool: possible involvement of the activation of dorsal raphe nucleus-serotonergic neurons. Mol Brain 6:59 https://doi.org/10.1186/1756-6606-6-59

Jerge CR (1963) The function of the nucleus supratrigeminalis. J Neurophysiol 26:393–402

Kawamura Y, Tsukamoto S (1960) Analysis of jaw movements from the cortical jaw motor area and amygdala. Jpn J Physiol 10:471–488

Kidokoro Y, Kubota K, Shuto S, Sumino R (1968) Possible interneurons responsible for reflex inhibition of motoneurons of jaw-closing muscles from the inferior dental nerve. J Neurophysiol 31:709–716

Kosinski RJ, Neafsey EJ, Castro AJ (1986) A comparative topographical analysis of dorsal column nuclear and cerebral cortical projections to the basilar pontine gray in rats. J Comp Neurol 244:163–173

Landgren S, Olsson KA (1980) The effect of electrical stimulation in the hypothalamus on the monosynaptic jaw closing and the disynaptic jaw opening reflexes in the cat. Exp Brain Res 39:389–400

Li YQ, Takada M, Kaneko T, Mizuno N (1995) Premotor neurons for trigeminal motor nucleus neurons innervating the jaw-closing and jaw-opening muscles: differential distribution in the lower brainstem of the rat. J Comp Neurol 356:563–579

Lorente de No ́R (1922) Contribucio ́na1conocimientodelnervio trige ́mino. Libro en honor de Dn. S. Ramo n y Cajal. Madrid, Mo ́ya 2:13

Lorente de No ́R (1933) Vestibulo-ocular reflex arc. Arch Neurol Psychiat 30:245–291

Luo P, Moritani M, Dessem D (2001) Jaw-muscle spindle afferent pathways to the trigeminal motor nucleus in the rat. J Comp Neurol 435:341–353

Luo P, Wong R, Dessem D (1995) Projection of jaw-muscle spindle afferents to the caudal brainstem in rats demonstrated using intracellular biotinamide. J Comp Neurol 358:63–78

Ma WL, Zhang WB, Xiong KH, Guo F (2007) Visceral and orofacial somatic afferent fiber terminals converge onto the same neuron in paratrigeminal nucleus: An electron microscopic study in rats. Auton Neurosci 131:45–49

Malick A, Burstein R (1998) Cells of origin of the trigeminohypothalamic tract in the rat. J Comp Neurol 400:125–144

Malick A, Strassman RM, Burstein R (2000) Trigeminohypothalamic and reticulohypothalamic tract neurons in the upper cervical spinal cord and caudal medulla of the rat. J Neurophysiol 84:2078–2112

Mascaro MB, Prosdo´cimi FC, Bittencourt JC, Elias CF (2009) Forebrain projections to brainstem nuclei involved in the control of mandibular movements in rats. Eur J Oral Sci 117:676–684

Mesulam MM, Mufson EJ (1982) Insula of the old world monkey. III: efferent cortical output and comments on function. J Comp Neurol 212:38–52

Mihailoff GA, Kosinski RJ, Azizi SA, Border BG (1989) Survey of noncortical afferent projections to the basilar pontine nuclei: a retrograde tracing study in the rat. J Comp Neurol 282:617–643

Mitrofanis J (2005) Some certainty for the "zone of uncertainty"? Exploring the function of the zona incerta. Neuroscience 130:1–15

Miyazaki R, Luschei ES (1987) Responses of neurons in nucleus supratrigeminalis to sinusoidal jaw movements in the cat. Exp Neurol 96:145–157

Mizuno N (1970) Projection fibers from the main sensory trigeminal nucleus and the supratrigeminal region. J Comp Neurol 139:457–471

Nakamura S, Inoue T, Nakajima K, Moritani M, Nakayama K, Tokita K, Yoshida A, Maki K (2008) Synaptic transmission from the supratrigeminal region to jaw-closing and jaw- opening motoneurons in developing rats. J Neurophysiol 100:1885–1896

Nakamura Y, Kubo Y (1978) Masticatory rhythm in intracellular potential of trigeminal motoneurons induced by stimulation of orbital cortex and amygdala in cats. Brain Res 14:504–509

Nonaka M, Nishimura A, Nakamura S, Nakayama K, Mochizuki A, Iijima T, Inoue T (2012) Convergent pre-motoneuronal inputs to single trigeminal motoneurons. J Dent Res 91:888–893

Notsu K, Tsumori T, Yokota S, Sekine J, Yasui Y (2008) Posterior lateral hypothalamic axon terminals are in contact with trigeminal premotor neurons in the parvicellular reticular formation of the rat medulla oblongata. Brain Res 1244:71–81

Ogawa H, Wang XD (2002) Neurons in the cortical taste area receive nociceptive inputs from the whole body as well as the oral cavity in the rat. Neurosci Lett 322:87–90

Ohta M, Moriyama Y (1986) Supratrigeminal neurons mediate the shortest, disynaptic pathway from the central amygdaloid nucleus to the contralateral trigeminal motoneurons in the rat. Comp Biochem Physiol A Comp Physiol 83:633–641

Oka A, Yamamoto M, Takeda R, Ohara H, Sato F, Akhter F, Haque T, Kato T, Sessle BJ, Takada K, Yoshida A (2013) Jaw-opening and -closing premotoneurons in the nucleus of the solitary tract making contacts with laryngeal and pharyngeal afferent terminals in rats. Brain Res 1540:48–63

Paik SK, Lee HJ, Choi MK, Cho YS, Park MJ, Moritani M, Yoshida A, Kim YS, Bae YC (2009) Ultrastructural analysis of glutamate-, GABA-, and glycine-immunopositive boutons from supratrigeminal premotoneurons in the rat trigeminal motor nucleus. J Neurosci Res 87:1115–1122

Papp RS, Palkovits M (2014) Brainstem projections of neurons located in various subdivisions of the dorsolateral hypothalamic area-an anterograde tract-tracing study. Front Neuroanat 8:34 https://www.doi.org/10.3389/fnana.2014.00034

Paxinos G, Watson C (1986) The Rat Brain in Stereotaxic Coordinates. 2nd ed. Academic Press, Sydney

Paxinos G, Watson C (1998) The Rat Brain in Stereotaxic Coordinates. 4th ed. Academic Press, Sydney

Paxinos G, Watson C (2014) The Rat Brain in Stereotaxic Coordinates. 7th ed. Academic Press, Sydney

Peters J, Kalivas PW, Quirk GJ (2009) Extinction circuits for fear and addiction overlap in prefrontal cortex. Learn Mem 16:279–288

Phelan KD, Falls WM (1989) The interstitial system of the spinal trigeminal tract in the rat: anatomical evidence for morphological and functional heterogeneity. Somatosens Mot Res 6:367–399

Porter JD, Donaldson IM (1991) The anatomical substrate for cat extraocular muscle proprioception. Neuroscience 43:473–483

Rokx JT, van Willigen JD, Jüch PJ (1986) Bilateral brainstem connections of the rat supratrigeminal region. Acta Anat (Basel) 127:16–21

Rosén I, Sjölund B (1973) Organization of group I activated cells in the main and external cuneate nuclei of the cat: identification of muscle receptors. Exp Brain Res 16:221–237

Sanders KH, Klein CE, Mayor TE, Heym C, Handwerker HO (1980) Differential effects of noxious and non-noxious input on neurones according to location in ventral periaqueductal grey or dorsal raphe nucleus. Brain Res 186:83–97

Sasamoto K, Ohta M (1982) Amygdaloid-induced jaw opening and facilitation or inhibition of the trigeminal motoneurons in the rat. Comp Biochem Physiol A Comp Physiol 73:349–354

Sasamoto K, Zhang G, Iwasaki M (1990) Two types of rhythmical jaw movements evoked by stimulation of the rat cortex. Jpn J Oral Biol 32:57–68

Sato F, Akhter F, Haque T, Kato T, Takeda R, Nagase Y, Sessle BJ, Yoshida A (2013) Projections from the insular cortex to pain- receptive trigeminal caudal subnucleus (medullary dorsal horn) and other lower brainstem areas in rats. Neuroscience 233:9–27

Sato F, Kado S, Tsutsumi Y, Tachibana Y, Ikenoue E, Furuta T, Uchino K, Bae YC, Uzawa N, Yoshida A (2020) Ascending projection of jaw-closing muscle-proprioception to the intralaminar thalamic nuclei in rats. Brain Res 1739:146830. https://doi.org/10.1016/j.brainres.2020.146830

Sato F, Uemura Y, Kanno C, Tsutsumi Y, Tomita A, Oka A, Kato T, Uchino K, Murakami J, Haque T, Tachibana Y, Yoshida A (2017) Thalamo-insular pathway conveying orofacial muscle proprioception in the rat. Neuroscience 365:158–178

Satoh Y, Ishizuka K, Murakami T (2007) Changes in cortically induced rhythmic jaw movements after lesioning of the red nucleus in rats. Brain Res 1165:60–70

Sawchenko PE, Brown ER, Chan RK, Ericsson A, Li HY, Roland BL, Kovacs KJ (1996) The paraventricular nucleus of the hypothalamus and the functional neuroanatomy of visceromotor responses to stress. Prog Brain Res 107:201–222

Shammah-Lagnado SJ, Alheid GF, Heimer L (2001) Striatal and central extended amygdala parts of the interstitial nucleus of the posterior limb of the anterior commissure: evidence from tract-tracing techniques in the rat. J Comp Neurol 439:104–126

Shigenaga Y, Doe K, Suemune S, Mitsuhiro Y, Tsuru K, Otani K, Shirana Y, Hosoi M, Yoshida A, Kagawa K (1989) Physiological and morphological characteristics of periodontal mesencephalic trigeminal neurons in the cat –intra-axonal staining with HRP. Brain Res 505:91–110

Shigenaga Y, Mitsuhiro Y, Shirana Y, Tsuru H (1990) Two types of jaw-muscle spindle afferents in the cat as demonstrated by intra-axonal staining with HRP. Brain Res 514:219–237

Shigenaga Y, Mitsuhiro Y, Yoshida A, Cao CQ, Tsuru H (1988b) Morphology of single mesencephalic trigeminal neurons innervating masseter muscle of the cat. Brain Res 445:392–399

Shigenaga Y, Sera M, Nishimori T, Suemune S, Nishimura M, Yoshida A, Tsuru K (1988a) The central projection of masticatory afferent fibers to the trigeminal sensory nuclear complex and upper cervical spinal cord. J Comp Neurol 268:489–507

Shimizu K, Asano M, Kitagawa J, Ogiso B, Ren K, Oki H, Matsumoto M, Iwata K (2006) Phosphorylation of extracellular signal-regulated kinase in medullary and upper cervical cord neurons following noxious tooth pulp stimulation. Brain Res 1072:99–109

Stanek IV E, Cheng S, Takatoh J, Han BX, Wang F (2014) Monosynaptic premotor circuit tracing reveals neural substrates for oro-motor coordination. eLife 3:e02511. https://doi.org/10.7554/eLife.02511

Swanson LW (2004) Brain maps: Structure of the rat brain. A laboratory guide with printed and electronic templates for data, models and schematics (3rd ed.). Elsevier, Amsterdam, The Netherlands

Swenson RS, Kosinski RJ, Castro AJ (1984) Topography of spinal, dorsal column nuclear, and spinal trigeminal projections to the pontine gray in rats. J Comp Neurol 222:301–311

Takata M, Kawamura Y (1970) Neurophysiologic properties of the supratrigeminal nucleus. Jap J Physiol 20:1–11

Takemura M, Sugimoto T, Shigenaga Y (1991) Difference in central projection of primary afferents innervating facial and intraoral structures in the rat. Exp Neurol 111:324–331

Taylor A (1990) Neurophysiology of the Jaws and Teeth. Macmillan Press, London

Ter Horst GJ, Copray JC, Liem RS, Van Willigen JD (1991) Projections from the rostral parvocellular reticular formation to pontine and medullary nuclei in the rat: involvement in autonomic regulation and orofacial motor control. Neuroscience 40:735–758

Thompson RH, Swanson LW (2003) Structural characterization of a hypothalamic visceromotor pattern generator network. Brain Res Brain Res Rev 41:153–202

Tomita A, Kato T, Sato F, Haque T, Oka A, Yamamoto M, Ono T, Bae YC, Maeda Y, Sessle BJ, Yoshida A (2012) Somatotopic direct projections from orofacial areas of primary somatosensory cortex to pons and medulla, especially to trigeminal sensory nuclear complex, in rats. Neuroscience 200:166–185

Torvik A (1956) Afferent connections to the sensory trigeminal nuclei, the nucleus of the solitary tract and adjacent structures. J Comp Neurol 106:51–141

Travers JB, Norgren R (1983) Afferent projections to the oral motor nuclei in the rat. J Comp Neurol 220:280–298

Tsutsumi Y, Mizuno Y, Haque H, Sato F, Furuta T, Oka A, Moritani M, Bae YC, Yamashiro T, Tachibana Y, Yoshida A (2021) Widespread corticopetal projections from the oval paracentral nucleus of the intralaminar thalamic nuclei conveying orofacial proprioception in rats. Brain Struct Funct 226:1115–1133

Uchida T, Adachi K, Fujita S, Lee J, Gionhaku N, Cools AR, Koshikawa N (2005) Role of GABAA receptors in the retrorubral filed and ventral pallidum in rat jaw movements elicited by dopaminergic stimulation of the nucleus accumbens shell. Eur J Pharmacol 510:39–47

Uchino K, Higashiyama K, Kato T, Haque T, Sato F, Tomita A, Tsutsumi K, Moritani M, Yamamura K, Yoshida A (2015) Jaw movement-related primary somatosensory cortical area in the rat. Brain Res 284:55–64

Uemura Y, Haque T, Sato F, Tsutsumi Y, Ohara H, Oka A, Furuta T, Bae YC, Yamashiro T, Tachibana Y, Yoshida A (2020) Proprioceptive thalamus receiving forelimb and neck muscle spindle inputs via the external cuneate nucleus in the rat. Brain Struct Funct 225:2177–2192

Valverde F (1962) Reticular formation of the albino rat’s brain stem cytoarchitecture and corticofugal connections. J Comp Neurol 119:25–53

VanderWerf F, Aramideh M, Ongerboer de Visser BW, Baljet B, Speelman JD, Otto AJ (1997) A retrograde double fluorescent tracing study of the levator palpebrae superioris muscle in the cynomolgus monkey. Exp Brain Res 113:174–179

Van Eden CG, Lamme VA, Uylings HB (1992) Heterotopic cortical afferents to the medial prefrontal cortex in the rat. A combined retrograde and anterograde tracer study. Eur J Neurosci 4:77–97

Vidal-Gonzalez I, Vidal-Gonzalez B, Rauch SL, Quirk GJ (2006) Microstimulation reveals opposing influences of prelimbic and infralimbic cortex on the expression of conditioned fear. Learn Mem 13:728–733

Weiner S, Shaikh MB, Siegel A (1993) Electromyographic activity in the masseter muscle resulting from stimulation of hypothalamic behavioral sites in the cat. J Orofac Pain 7:370– 377

Wiesendanger R, Wiesendanger M (1982) The corticopontine system in the rat. II. The projection pattern. J Comp Neurol 208:227–238

Yamamoto T, Matsuo R, Kiyomitsu Y, Kitamura R (1988) Sensory inputs from the oral region to the cerebral cortex in behaving rats: an analysis of unit responses in cortical somatosensory and taste areas during ingestive behavior. J Neurophysiol 60:1303–1321

Yamamoto T, Matsuo R, Kiyomitsu Y, Kitamura R (1989) Sensory and motor responses of trigeminal and reticular neurons during ingestive behavior in rats. Exp Brain Res 76:386–400

Yamamoto M, Moritani M, Chang Z, Taki I, Tomita A, Ono T, Bae YC, Shigenaga Y, Yoshida A (2007) The somatotopic organization of trigeminal premotoneurons in the cat brainstem. Brain Res 1149:111–117

Yamamoto T, Yuyama N, Kawamura Y (1981) Cortical neurons responding to tactile, thermal and taste stimulations of the rat’s tongue. Brain Res 221:202–206

Yasui Y, Kayahara T, Shiroyama T, Nakano K (1993) Neurons in the intertrigeminal region of the rat send projection fibers to the superior colliculus. Neurosci Lett 159:39–42

Yasui Y, Tsumori T, Ando A, Domoto T (1995) Demonstration of axon collateral projections from the substantia nigra pars reticulata to the superior colliculus and the parvicellular reticular formation in the rat. Brain Res 674:122–126

Yasui Y, Tsumori T, Ando A, Domoto T, Kayahara T, Nakano K (1994) Descending projections from the superior colliculus to the reticular formation around the motor trigeminal nucleus and the parvicellular reticular formation of the medulla oblongata in the rat. Brain Res 656:420–426

Yoshida A, Fujio T, Sato F, Ali MS, Haque T, Ohara H, Moritani M, Kato T, Dostrovsky JO, Tachibana Y (2017) Orofacial proprioceptive thalamus of the rat. Brain Struct Funct 222:2655–2669

Yoshida A, Taki I, Chang Z, Iida C, Haque T, Tomita A, Seki S, Yamamoto S, Masuda Y, Moritani M, Shigenaga Y (2009) Corticofugal projections to trigeminal motoneurons innervating antagonistic jaw muscles in rats as demonstrated by anterograde and retrograde tract tracing. J Comp Neurol 514:368–386

Zhang GX, Sasamoto K (1990) Projections of two separate cortical areas for rhythmical jaw movements in the rat. Brain Res Bull 24:221–230

Zhou Q, Imbe H, Dubner R, Ren K (1999) Persistent Fos protein expression after orofacial deep or cutaneous tissue inflammation in rats: implications for persistent orofacial pain. J Comp Neurol 412:276–291

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る