リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「情動行動を司る背側縫線核セロトニン神経の役割に関する研究」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

情動行動を司る背側縫線核セロトニン神経の役割に関する研究

永井, 佑茉 京都大学 DOI:10.14989/doctor.k23839

2022.03.23

概要

不安や喜びといった情動の制御は個体の生存に必須であり、情動制御機構の破綻はうつ病をはじめとする精神疾患の発症要因となることが知られている。様々な情動制御機構や精神疾患の発症メカニズムを神経回路レベルで明らかにするには、特定の神経回路の活性のみを亢進あるいは減弱させた際にいかなる行動の変化が生じるかを個々に明らかにすることが重要である。近年、微生物由来の光感受性タンパク質であるチャネルロドプシン2(ChR2)等を特定の神経細胞に発現させ、光によりその神経活動を亢進/抑制する光遺伝学技術が急速に発展している。しかし特定の神経細胞にChR2を発現させるツールは齧歯類では広く使用されているものの、非ヒト霊長類ではほとんど開発されていない。そこで第1章では非ヒト霊長類のゲノム配列を使用し、特定の神経細胞に外来遺伝子の発現を可能にするツールの開発を行った。また数ある脳内の神経の中でも背側縫線核を起始核としたセロトニン神経回路は精神疾患の発症・治療において重要な役割を果たしていることが知られている。しかし背側縫線核のセロトニン神経は多様な神経接続及び機能を有し、どの亜集団がいかなる情動の制御に関与しているのかは依然として不明なままである。そこで第2章においては嗜好/嫌悪の調整、第3章においては抗うつ作用をそれぞれ司るセロトニンの神経の同定とそのメカニズムの解明を目指して以下の検討を行った。

第1章 サルゲノム中の神経細胞種特異的プロモーター配列の同定
 特定の神経細胞種に対する特異性と発現量はプロモーター配列に大きく依存することが知られている。そこで本研究では、非ヒト霊長類の一種であるマカクサルのゲノム配列を使用し複数の神経細胞種に特異的かつ高活性なプロモーター配列の同定を、マウス脳をモデルとして行った。その結果、大脳皮質介在神経の亜集団のマーカーであるソマトスタチンなど8種類の細胞種に対して80%以上という高い特異性を有するプロモーター配列の同定に成功した。

第2章 嗜好/嫌悪の調節における背側縫線核セロトニン神経の役割の解明
 脳内報酬系は個体の生存に必須の脳神経系の一つであり、その機能破綻はうつ病などの精神疾患患者でも見られる無快感症の原因ともなることから、その詳細なメカニズム解明は急務である。従来、脳内報酬系の中核を担っていると考えられてきたのは腹側被蓋野ドパミン神経である。一方で近年、気分調節や不安などの情動機能の制御に関わる背側縫線核セロトニン神経回路の活動亢進が報酬効果を有する可能性が示唆されているものの否定する報告もなされており、その詳細は未だ不明である。そこで本研究では、セロトニン神経特異的に外来遺伝子を高発現させ得るアデノ随伴ウイルスベクター(AAV)を作製するとともに光遺伝学的手法を用いて、背側縫線核セロトニン神経の活動変化が報酬関連行動に与える影響を検討した。青色光により神経活動を亢進させ得るCheRiff、および緑色光で神経活動を抑制することができるeArchTを用いて背側縫線核セロトニン神経活動を特異的に亢進/減弱させた際の報酬系に与える影響をオペラント条件付け試験と条件付け場所嗜好性試験により検討した。その結果、背側縫線核セロトニン神経の活動亢進は光活性と関連付けられたノーズポーク行動の回数および光活性と関連付けられた区域での滞在時間を有意に増加させた。またこれらの効果は腹側被蓋野に投射するセロトニン神経を光活性化させた際にも見出された。一方、背側縫線核セロトニン神経あるいは腹側被蓋野のセロトニン神経終末の光抑制は顕著な場所嫌悪性を誘発した。以上の結果は腹側被蓋野に投射する背側縫線核セロトニン神経活動が嗜好/嫌悪のバランスを決定していることを強く示唆している。

第3章 抗うつ作用を司る背側縫線核セロトニン神経回路の解明
 うつ病は長期的な快楽の喪失や意欲の低下などを主症状とする精神疾患である。その治療薬として選択的セロトニン再取り込み阻害薬が使用されることから、うつ病の発症・消失にセロトニン神経が重要な働きを担っていることが示唆されている。しかし脳全体に投射する背側縫線核セロトニン神経のうち、抗うつ作用に関与している投射領域はどこなのか、その投射先でどのような機構で抗うつ作用が惹起されているのかは不明である。本章では第2章で作製したAAVを用いて、抗うつ作用を司るセロトニン神経回路の解明を目指し検討を行った。その結果、うつ病モデルマウスとして繁用される社会的敗北ストレスを負荷したマウスにおいて、背側縫線核あるいは背側縫線核から腹側被蓋野に投射するセロトニン神経の光活性化を行うことで抗うつ作用が生じることが明らかとなった。その神経メカニズムについて組織化学的手法で検討したところ、セロトニン神経の活性化により海馬歯状回において過去の楽しい体験の時に活性化した神経細胞群(快体験関連神経細胞群)が再活性化されることが明らかとなった。さらに薬理学的な検討を行った結果、背側縫線核から腹側被蓋野に投射しているセロトニン神経の光活性化による抗うつ効果、および快体験関連神経細胞群の優先的な再活性化はドパミン受容体を介したものであることが明らかになった。

参考文献

1. Harrison, P. J. & Weinberger, D. R. Schizophrenia genes, gene expression, and neuropathology: On the matter of their convergence. Mol. Psychiatry 10, 40–68 (2005).

2. Pittenger, C. & Duman, R. S. Stress, depression, and neuroplasticity: A convergence of mechanisms. Neuropsychopharmacology 33, 88–109 (2008).

3. Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–8 (2005).

4. Armbruster, B. N., Li, X., Pausch, M. H., Herlitze, S. & Roth, B. L. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc. Natl. Acad. Sci. USA 104, 5163–5168 (2007).

5. Gomez, J. L. et al. Chemogenetics revealed: DREADD occupancy and activation via converted clozapine. Science. 357, 503–507 (2017).

6. Nakamura, K., Matsumoto, M. & Hikosaka, O. Reward-dependent modulation of neuronal activity in the primate dorsal raphe nucleus. J. Neurosci. 28, 5331–43 (2008).

7. Isa, T., Yamane, I., Hamai, M. & Inagaki, H. Japanese macaques as laboratory animals. Exp. Anim. 58, 451–457 (2009).

8. Knobloch, H. S. et al. Evoked axonal oxytocin release in the central amygdala attenuates fear response. Neuron 73, 553–566 (2012).

9. Nishitani, N. et al. Manipulation of dorsal raphe serotonergic neurons modulates active coping to inescapable stress and anxiety-related behaviors in mice and rats. Neuropsychopharmacology 44, 721–732 (2019).

10. Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13, 133–40 (2010).

11. Madisen, L. et al. A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. Nat. Neurosci. 15, 793–802 (2012).

12. Diester, I. et al. An optogenetic toolbox designed for primates. Nat. Neurosci. 14, 387–97 (2011).

13. Klein, C. et al. Cell-Targeted Optogenetics and Electrical Microstimulation Reveal the Primate Koniocellular Projection to Supra-granular Visual Cortex. Neuron 90, 143–151 (2016).

14. Stauffer, W. R. et al. Dopamine Neuron-Specific Optogenetic Stimulation in Rhesus Macaques. Cell 166, 1564-1571.e6 (2016).

15. El-Shamayleh, Y., Kojima, Y., Soetedjo, R. & Horwitz, G. D. Selective Optogenetic Control of Purkinje Cells in Monkey Cerebellum. Neuron 95, 51-62.e4 (2017).

16. Dermitzakis, E. T. & Clark, A. G. Evolution of transcription factor binding sites in Mammalian gene regulatory regions: conservation and turnover. Mol. Biol. Evol. 19, 1114–21 (2002).

17. Benzekhroufa, K., Liu, B. H., Teschemacher, A. G. & Kasparov, S. Targeting central serotonergic neurons with lentiviral vectors based on a transcriptional amplification strategy. Gene Ther. 16, 681–688 (2009).

18. Takahashi, A., Nagayasu, K., Nishitani, N., Kaneko, S. & Koide, T. Control of intermale aggression by medial prefrontal cortex activation in the mouse. PLoS One 9, e94657 (2014).

19. Lein, E. S. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176 (2007).

20. Ovcharenko, I., Loots, G. G., Hardison, R. C., Miller, W. & Stubbs, L. zPicture: Dynamic alignment and visualization tool for analyzing conservation profiles. Genome Res. 14, 472–477 (2004).

21. Lucki, I. The spectrum of behaviors influenced by serotonin. Biol. Psychiatry 44, 151–162 (1998).

22. Picciotto, M. R., Higley, M. J. & Mineur, Y. S. Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior. Neuron 76, 116–129 (2012).

23. Albin, R. L., Young, A. B. & Penney, J. B. The functional anatomy of basal ganglia disorders. Trends Neurosci. 12, 366–75 (1989).

24. Balleine, B. W., Delgado, M. R. & Hikosaka, O. The Role of the Dorsal Striatum in Reward and Decision-Making. J. Neurosci. 27, 8161–8165 (2007).

25. Samaranch, L. et al. Adeno-Associated Virus Serotype 9 Transduction in the Central Nervous System of Nonhuman Primates. Hum. Gene Ther. 23, 382–389 (2012).

26. Oguchi, M. et al. Double virus vector infection to the prefrontal network of the macaque brain. PLoS One 10, 1–15 (2015).

27. Hastie, E. & Samulski, R. J. Adeno-Associated Virus at 50: A Golden Anniversary of Discovery, Research, and Gene Therapy Success—A Personal Perspective. Hum. Gene Ther. 26, 257–265 (2015).

28. Naso, M. F., Tomkowicz, B., Perry, W. L. & Strohl, W. R. Adeno-Associated Virus (AAV) as a Vector for Gene Therapy. BioDrugs 31, 317–334 (2017).

29. Wu, Z., Yang, H. & Colosi, P. Effect of genome size on AAV vector packaging. Mol. Ther. 18, 80–86 (2010).

30. Lentz, T. B., Gray, S. J. & Samulski, R. J. Viral vectors for gene delivery to the central nervous system. Neurobiol. Dis. 48, 179–188 (2012).

31. Costello, C. G. Depression: Loss of Reinforcers or Loss of Reinforcer Effectiveness? - Republished Article. Behav. Ther. 47, 595–599 (2016).

32. Pizzagalli, D. A., Iosifescu, D., Hallett, L. A., Ratner, K. G. & Fava, M. Reduced hedonic capacity in major depressive disorder: evidence from a probabilistic reward task. J. Psychiatr. Res. 43, 76–87 (2008).

33. Der-Avakian, A. & Markou, A. The neurobiology of anhedonia and other reward-related deficits. Trends Neurosci. 35, 68–77 (2012).

34. Hall, G. B. C., Milne, A. M. B. & MacQueen, G. M. An fMRI study of reward circuitry in patients with minimal or extensive history of major depression. Eur. Arch. Psychiatry Clin. Neurosci. 264, 187–198 (2014).

35. Strauss, G. P., Waltz, J. A. & Gold, J. M. A review of reward processing and motivational impairment in schizophrenia. Schizophrenia Bulletin 40, 107–116 (2014).

36. Spanagel, R. & Weiss, F. The dopamine hypothesis of reward: Past and current status. Trends Neurosci. 22, 521–527 (1999).

37. Wise, R. A. Dopamine, learning and motivation. Nat. Rev. Neurosci. 5, 483–494 (2004).

38. Kirby, L. G., Zeeb, F. D. & Winstanley, C. A. Contributions of serotonin in addiction vulnerability. Neuropharmacology 61, 421–432 (2011).

39. Liu, Z. et al. Dorsal raphe neurons signal reward through 5-HT and glutamate. Neuron 81, 1360–1374 (2014).

40. Li, Y. et al. Serotonin neurons in the dorsal raphe nucleus encode reward signals. Nat. Commun. 7, (2016).

41. Wang, H. L. et al. Dorsal Raphe Dual Serotonin-Glutamate Neurons Drive Reward by Establishing Excitatory Synapses on VTA Mesoaccumbens Dopamine Neurons. Cell Rep. 26, 1128-1142.e7 (2019).

42. Rompre, P. P. & Miliaressis, E. Pontine and mesencephalic substrates of self-stimulation. Brain Res. 359, 246–259 (1985).

43. Rompré, P. P. & Boye, S. Localization of reward-relevant neurons in the pontine tegmentum: a moveable electrode mapping study. Brain Res. 496, 295–302 (1989).

44. Van Der Kooy, D., Fibiger, H. C. & Phillips, A. G. An analysis of dorsal and median raphe self-stimulation: Effects of para-chlorophenylalanine. Pharmacol. Biochem. Behav. 8, 441–445 (1978).

45. Fakhoury, M., Rompré, P. P. & Boye, S. M. Role of the dorsal diencephalic conduction system in the brain reward circuitry. Behav. Brain Res. 296, 431–441 (2016).

46. Weixin, Z., Li, Y., Feng, Q. & Luo, M. Learning and Stress Shape the Reward Response Patterns of Serotonin Neurons. J. Neurosci. 37, 1181–17 (2017).

47. Harrison, A. A., Liem, Y. T. B. & Markou, A. Fluoxetine combined with a serotonin-1A receptor antagonist reversed reward deficits observed during nicotine and amphetamine withdrawal in rats. Neuropsychopharmacology 25, 55–71 (2001).

48. Rocha, B. A. et al. Cocaine self-administration in dopamine-transporter knockout mice. Nat. Neurosci. 1, 132–7 (1998).

49. Hnasko, T. S., Sotak, B. N. & Palmiter, R. D. Cocaine-conditioned place preference by dopamine-deficient mice is mediated by serotonin. J. Neurosci. 27, 12484–12488 (2007).

50. De Deurwaerdère, P. & Di Giovanni, G. Serotonergic modulation of the activity of mesencephalic dopaminergic systems: Therapeutic implications. Prog. Neurobiol. 151, 175–236 (2017).

51. Azmitia, E. C. & Segal, M. An autoradiographic analysis of the differential ascending projections of the dorsal and median raphe nuclei in the rat. J. Comp. Neurol. 179, 641–667 (1978).

52. Ishimura, K. et al. Quantitative analysis of the distribution of serotonin-immunoreactive cell bodies in the mouse brain. Neurosci. Lett. 91, 265–270 (1988).

53. Luo, M., Zhou, J. & Liu, Z. Reward processing by the dorsal raphe nucleus: 5-HT and beyond. Learn. Mem. 22, 452–460 (2015).

54. McDevitt, R. A. et al. Serotonergic versus nonserotonergic dorsal raphe projection neurons: Differential participation in reward circuitry. Cell Rep. 8, 1857–1869 (2014).

55. Fonseca, M. S., Murakami, M. & Mainen, Z. F. Activation of dorsal raphe serotonergic neurons promotes waiting but is not reinforcing. Curr. Biol. 25, 306–315 (2015).

56. Ohmura, Y., Tanaka, K. F., Tsunematsu, T., Yamanaka, A. & Yoshioka, M. Optogenetic activation of serotonergic neurons enhances anxiety-like behaviour in mice. Int. J. Neuropsychopharmacol. 17, 1777–1783 (2014).

57. Zhang, T. et al. Glutamatergic neurons in the medial prefrontal cortex mediate the formation and retrieval of cocaine-associated memories in mice. Addict. Biol. 25, 1–11 (2020).

58. Zhang, T. et al. Activation of GABAergic Neurons in the Nucleus Accumbens Mediates the Expression of Cocaine-Associated Memory. Biol. Pharm. Bull. 41, 1084–1088 (2018).

59. Tzschentke, T. M. Measuring reward with the conditioned place preference paradigm: A comprehensive review of drug effects, recent progress and new issues. Prog. Neurobiol. 56, 613–672 (1998).

60. Hochbaum, D. R. et al. All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins. Nat. Methods 11, 825–33 (2014).

61. Vertes, R. P. A PHA‐L analysis of ascending projections of the dorsal raphe nucleus in the rat. J. Comp. Neurol. 313, 643–668 (1991).

62. Muzerelle, A., Scotto-Lomassese, S., Bernard, J. F., Soiza-Reilly, M. & Gaspar, P. Conditional anterograde tracing reveals distinct targeting of individual serotonin cell groups (B5–B9) to the forebrain and brainstem. Brain Struct. Funct. 221, 535–561 (2016).

63. Miyazaki, K. W. et al. Optogenetic activation of dorsal raphe serotonin neurons enhances patience for future rewards. Curr. Biol. 24, 2033–2040 (2014).

64. Miyazaki, K. et al. Reward probability and timing uncertainty alter the effect of dorsal raphe serotonin neurons on patience. Nat. Commun. 9, 2048 (2018).

65. Mattis, J. et al. Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins. Nat. Methods 9, 159–72 (2011).

66. Byerley, W. F., Reimherr, F. W., Wood, D. R. & Grosser, B. I. Fluoxetine, a selective serotonin uptake inhibitor, for the treatment of outpatients with major depression. J. Clin. Psychopharmacol. 8, 112–5 (1988).

67. Muijen, M., Roy, D., Silverstone, T., Mehmet, A. & Christie, M. A comparative clinical trial of fluoxetine, mianserin and placebo in depressed outpatients. Acta Psychiatr. Scand. 78, 384–90 (1988).

68. Feighner, J. P. & Overø, K. Multicenter, placebo-controlled, fixed-dose study of citalopram in moderate-to-severe depression. J. Clin. Psychiatry 60, 824–30 (1999).

69. Ressler, K. J. & Nemeroff, C. B. Role of serotonergic and noradrenergic systems in the pathophysiology of depression and anxiety disorders. Depress. Anxiety 12 Suppl 1, 2–19 (2000).

70. Ren, J. et al. Anatomically Defined and Functionally Distinct Dorsal Raphe Serotonin Sub-systems. Cell 1–16 (2018). doi:10.1016/j.cell.2018.07.043

71. Browne, C. J. et al. Dorsal raphe serotonin neurons inhibit operant responding for reward via inputs to the ventral tegmental area but not the nucleus accumbens: evidence from studies combining optogenetic stimulation and serotonin reuptake inhibition. Neuropsychopharmacology 44, 793–804 (2019).

72. Tanaka, K. F. et al. Expanding the Repertoire of Optogenetically Targeted Cells with an Enhanced Gene Expression System. Cell Rep. 2, 397–406 (2012).

73. Grimm, D. et al. In Vitro and In Vivo Gene Therapy Vector Evolution via Multispecies Interbreeding and Retargeting of Adeno-Associated Viruses. J. Virol. 82, 5887–5911 (2008).

74. Jacobs, B. L. & Azmitia, E. C. Structure and function of the brain serotonin system. Physiol. Rev. 72, 165–230 (1992).

75. Charara, A. & Parent, A. Chemoarchitecture of the primate dorsal raphe nucleus. J. Chem. Neuroanat. 15, 111–27 (1998).

76. Gras, C. et al. A third vesicular glutamate transporter expressed by cholinergic and serotoninergic neurons. J. Neurosci. 22, 5442–5451 (2002).

77. Hioki, H. et al. Vesicular glutamate transporter 3-expressing nonserotonergic projection neurons constitute a subregion in the rat midbrain raphe nuclei. J. Comp. Neurol. 518, 668–686 (2010).

78. Ren, J. et al. Single-cell transcriptomes and whole-brain projections of serotonin neurons in the mouse dorsal and median raphe nuclei. Elife 8, 1–36 (2019).

79. Tzschentke, T. M. & Schmidt, W. J. Functional heterogeneity of the rat medial prefrontal cortex: Effects of discrete subarea-specific lesions on drug-induced conditioned place preference and behavioural sensitization. Eur. J. Neurosci. 11, 4099–4109 (1999).

80. Otis, J. M., Dashew, K. B. & Mueller, D. Neurobiological dissociation of retrieval and reconsolidation of cocaine-associated memory. J. Neurosci. 33, 1271–1281 (2013).

81. Hayashi, K., Nakao, K. & Nakamura, K. Appetitive and aversive information coding in the primate dorsal raphé nucleus. J. Neurosci. 35, 6195–6208 (2015).

82. Tan, K. R. et al. GABA neurons of the VTA drive conditioned place aversion. Neuron 73, 1173–83 (2012).

83. Solecki, W. B. et al. Effects of brief inhibition of the ventral tegmental area dopamine neurons on the cocaine seeking during abstinence. Addict. Biol. 1–13 (2019). doi:10.1111/adb.12826

84. Di Giovanni, G. & De Deurwaerdère, P. New therapeutic opportunities for 5-HT2C receptor ligands in neuropsychiatric disorders. Pharmacol. Ther. 157, 125–162 (2016).

85. Kupfer, D. J., Frank, E. & Phillips, M. L. Major depressive disorder: New clinical, neurobiological, and treatment perspectives. Lancet 379, 1045–1055 (2012).

86. Mann, J. J. Role of the serotonergic system in the pathogenesis of major depressionand suicidal behavior. Neuropsychopharmacology 21, 99S-105S (1999).

87. Köhler, S., Cierpinsky, K., Kronenberg, G. & Adli, M. The serotonergic system in the neurobiology of depression: Relevance for novel antidepressants. J. Psychopharmacol. 30, 13–22 (2016).

88. Teissier, A. et al. Activity of Raphé Serotonergic Neurons Controls Emotional Behaviors. Cell Rep. 13, 1965–1976 (2015).

89. Sagi, Y. et al. Emergence of 5-HT5A signaling in parvalbumin neurons mediates delayed antidepressant action. Mol. Psychiatry 25, 1191–1201 (2020).

90. Katz, M. M. et al. Onset and early behavioral effects of pharmacologically different antidepressants and placebo in depression. Neuropsychopharmacology 29, 566–579 (2004).

91. Krishnan, V. et al. Molecular Adaptations Underlying Susceptibility and Resistance to Social Defeat in Brain Reward Regions. Cell 131, 391–404 (2007).

92. Golden, S. A., Covington, H. E., Berton, O. & Russo, S. J. A standardized protocol for repeated social defeat stress in mice. Nat. Protoc. 6, 1183–1191 (2011).

93. Sachs, B. D., Ni, J. R. & Caron, M. G. Brain 5-HT deficiency increases stress vulnerability and impairs antidepressant responses following psychosocial stress. Proc. Natl. Acad. Sci. U. S. A. 112, 2557–2562 (2015).

94. Berton, O. et al. Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science. 311, 864–868 (2006).

95. Challis, C. et al. Raphe GABAergic Neurons Mediate the Acquisition of Avoidance after Social Defeat. J. Neurosci. 33, 13978–13988 (2013).

96. Zou, W. J. et al. A discrete serotonergic circuit regulates vulnerability to social stress. Nat. Commun. 11, 1–13 (2020).

97. Fanselow, M. S. & Dong, H. W. Are the Dorsal and Ventral Hippocampus Functionally Distinct Structures? Neuron 65, 7–19 (2010).

98. O’Reilly, R. C. & McClelland, J. L. Hippocampal conjunctive encoding, storage, and recall: Avoiding a trade‐off. Hippocampus 4, 661–682 (1994).

99. Dale, E. et al. Effects of serotonin in the hippocampus: How SSRIs and multimodal antidepressants might regulate pyramidal cell function. CNS Spectr. 21, 143–161 (2016).

100. Bower, G. H. Commentary on mood and memory. Behav. Res. Ther. 25, 443–55 (1987).

101. Gotlib, I. H. et al. Coherence and specificity of information-processing biases in depression and social phobia. J. Abnorm. Psychol. 113, 386–398 (2004).

102. Hamilton, J. P. & Gotlib, I. H. Neural Substrates of Increased Memory Sensitivity for Negative Stimuli in Major Depression. Biol. Psychiatry 63, 1155–1162 (2008).

103. Koster, E. H. W., De Raedt, R., Leyman, L. & De Lissnyder, E. Mood-congruent attention and memory bias in dysphoria: Exploring the coherence among information-processing biases. Behav. Res. Ther. 48, 219–225 (2010).

104. Gaddy, M. A. & Ingram, R. E. A meta-analytic review of mood-congruent implicit memory in depressed mood. Clin. Psychol. Rev. 34, 402–416 (2014).

105. Seligman, M. E. P. Positive Psychology: A Personal History. Annu. Rev. Clin. Psychol. 15, 1–23 (2019).

106. Fredrickson, B. L. The role of positive emotions in positive psychology. The broaden-and-build theory of positive emotions. Am. Psychol. 56, 218–26 (2001).

107. Sin, N. L. & Lyubomirsky, S. Enhancing well-being and alleviating depressive symptoms with positive psychology interventions: a practice-friendly meta-analysis. J. Clin. Psychol. 65, 467–87 (2009).

108. Wong, P. T. P. Existential positive psychology and integrative meaning therapy. Int. Rev. Psychiatry 32, 565–578 (2020).

109. Frankland, P. W., Josselyn, S. A. & Köhler, S. The neurobiological foundation of memory retrieval. Nat. Neurosci. 22, 1576–1585 (2019).

110. Josselyn, S. A. & Tonegawa, S. Memory engrams: Recalling the past and imagining the future. Science. 367, (2020).

111. Schacter, D. L., Eich, J. E. & Tulving, E. Richard Semon’s theory of memory. J. Verbal Learning Verbal Behav. 17, 721–743 (1978).

112. Liu, X. et al. Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 484, 381–385 (2012).

113. Ramirez, S. et al. Creating a false memory in the hippocampus. Science. 341, 387–91 (2013).

114. Redondo, R. L. et al. Bidirectional switch of the valence associated with a hippocampal contextual memory engram. Nature 513, 426–430 (2014).

115. Roy, D. S. et al. Memory retrieval by activating engram cells in mouse models of early Alzheimer’s disease. Nature 531, 508–512 (2016).

116. Roy, D. S., Muralidhar, S., Smith, L. M. & Tonegawa, S. Silent memory engrams as the basis for retrograde amnesia. Proc. Natl. Acad. Sci. U. S. A. 114, E9972–E9979 (2017).

117. Chen, B. K. et al. Artificially Enhancing and Suppressing Hippocampus-Mediated Memories. Curr. Biol. 29, 1885-1894.e4 (2019).

118. Zhang, T. R. et al. Negative memory engrams in the hippocampus enhance the susceptibility to chronic social defeat stress. J. Neurosci. 39, 7576–7590 (2019).

119. Doucette, E. et al. Social behavior in mice following chronic optogenetic stimulation of hippocampal engrams. Neurobiol. Learn. Mem. 176, (2020).

120. Ramirez, S. et al. Activating positive memory engrams suppresses depression-like behaviour. Nature 522, 335–339 (2015).

121. Ye, L. et al. Wiring and Molecular Features of Prefrontal Ensembles Representing Distinct Experiences. Cell 165, 1776–1788 (2016).

122. Guenthner, C. J., Miyamichi, K., Yang, H. H., Heller, H. C. & Luo, L. Permanent genetic access to transiently active neurons via TRAP: Targeted recombination in active populations. Neuron 78, 773–784 (2013).

123. Denny, C. A. et al. Hippocampal memory traces are differentially modulated by experience, time, and adult neurogenesis. Neuron 83, 189–201 (2014).

124. Kirihara, Y., Takechi, M., Kurosaki, K., Kobayashi, Y. & Kurosawa, T. Anesthetic effects of a mixture of medetomidine, midazolam and butorphanol in two strains of mice. Exp. Anim. 62, 173–80 (2013).

125. Andoh, C. et al. TRPM2 confers susceptibility to social stress but is essential for behavioral flexibility. Brain Res. 1704, 68–77 (2019).

126. Matsuda, T. & Cepko, C. L. Controlled expression of transgenes introduced by in vivo electroporation. Proc. Natl. Acad. Sci. U. S. A. 104, 1027–1032 (2007).

127. Kaufling, J. Alterations and adaptation of ventral tegmental area dopaminergic neurons in animal models of depression. Cell Tissue Res. 59–71 (2019) doi:10.1007/s00441-019-03007-9

128. Douma, E. H. & de Kloet, E. R. Stress-induced plasticity and functioning of ventral tegmental dopamine neurons. Neurosci. Biobehav. Rev. 108, 48–77 (2020).

129. Wittmann, B. C. et al. Reward-related fMRI activation of dopaminergic midbrain is associated with enhanced hippocampus-dependent long-term memory formation. Neuron 45, 459–467 (2005).

130. Russo, S. J. & Nestler, E. J. The brain reward circuitry in mood disorders. Nat. Rev. Neurosci. 14, 609–625 (2013).

131. Castillo Díaz, F., Caffino, L. & Fumagalli, F. Bidirectional role of dopamine in learning and memory-active forgetting. Neurosci. Biobehav. Rev. 131, 953–963 (2021).

132. Chaudhury, D. et al. Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature 493, 532–536 (2013).

133. Tye, K. M. et al. Dopamine neurons modulate neural encoding and expression of depression-related behaviour. Nature 493, 537–541 (2013).

134. Friedman, A. K. et al. Enhancing depression mechanisms in midbrain dopamine neurons achieves homeostatic resilience. Science. 344, 313–9 (2014).

135. Wook Koo, J. et al. Essential Role of Mesolimbic Brain-Derived Neurotrophic Factor in Chronic Social Stress–Induced Depressive Behaviors. Biol. Psychiatry 80, 469–478 (2016).

136. Steru, L., Chermat, R., Thierry, B. & Simon, P. The tail suspension test: A new method for screening antidepressants in mice. Psychopharmacology (Berl). 85, 367–370 (1985).

137. Walsh, J. J. et al. 5-HT release in nucleus accumbens rescues social deficits in mouse autism model. Nature (2018). doi:10.1038/s41586-018-0416-4

138. Dölen, G., Darvishzadeh, A., Huang, K. W. & Malenka, R. C. Social reward requires coordinated activity of nucleus accumbens oxytocin and serotonin. Nature 501, 179–184 (2013).

139. Marcinkiewcz, C. A. et al. Serotonin engages an anxiety and fear-promoting circuit in the extended amygdala. Nature 537, 97–101 (2016).

140. Mosienko, V. et al. Exaggerated aggression and decreased anxiety in mice deficient in brain serotonin. Transl. Psychiatry 2, e122-9 (2012).

141. Takahashi, A., Shimamoto, A., Boyson, C. O., DeBold, J. F. & Miczek, K. A. GABAB receptor modulation of serotonin neurons in the dorsal raphé nucleus and escalation of aggression in mice. J. Neurosci. 30, 11771–11780 (2010).

142. Stanton, C. H., Holmes, A. J., Chang, S. W. C. & Joormann, J. From Stress to Anhedonia: Molecular Processes through Functional Circuits. Trends Neurosci. 42, 23–42 (2019).

143. Nagai, Y. et al. The role of dorsal raphe serotonin neurons in the balance between reward and aversion. Int. J. Mol. Sci. 21, 1–17 (2020).

144. Nazzi, S., Maddaloni, G., Pratelli, M. & Pasqualetti, M. Fluoxetine Induces Morphological Rearrangements of Serotonergic Fibers in the Hippocampus. ACS Chem. Neurosci. 10, 3218–3224 (2019).

145. Medrihan, L. et al. Initiation of Behavioral Response to Antidepressants by Cholecystokinin Neurons of the Dentate Gyrus. Neuron 95, 564-576.e4 (2017).

146. Felsenberg, J. et al. Integration of Parallel Opposing Memories Underlies Memory Extinction. Cell 175, 709-722.e15 (2018).

147. Zhang, X., Kim, J. & Tonegawa, S. Amygdala Reward Neurons Form and Store Fear Extinction Memory. Neuron 105, 1077-1093.e7 (2020).

148. Kitamura, T. et al. Engrams and circuits crucial for systems consolidation of a memory. Science. 356, 73–78 (2017).

149. DeNardo, L. A. et al. Temporal evolution of cortical ensembles promoting remote memory retrieval. Nat. Neurosci. 22, 460–469 (2019).

150. Sengupta, A. & Holmes, A. A Discrete Dorsal Raphe to Basal Amygdala 5-HT Circuit Calibrates Aversive Memory. Neuron 1–17 (2019). doi:10.1016/j.neuron.2019.05.029

151. Knowland, D. et al. Distinct Ventral Pallidal Neural Populations Mediate Separate Symptoms of Depression. Cell 170, 284-297.e18 (2017).

152. Zhou, W. et al. A neural circuit for comorbid depressive symptoms in chronic pain. Nat. Neurosci. 22, (2019).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る