リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Study of gapped phases of 4d gauge theories using temporal gauging of the ℤN 1-form symmetry」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Study of gapped phases of 4d gauge theories using temporal gauging of the ℤN 1-form symmetry

Nguyen, Mendel Tanizaki, Yuya Unsal, Mithat 京都大学 DOI:10.1007/JHEP08(2023)013

2023.09

概要

To study gapped phases of 4d gauge theories, we introduce the temporal gauging of ℤN 1-form symmetry in 4d quantum field theories (QFTs), thereby defining effective 3d QFTs with ℤ∼N × ℤN 1-form symmetry. In this way, spatial fundamental Wilson and ’t Hooft loops are simultaneously genuine line operators. Assuming a mass gap and Lorentz invariant vacuum of the 4d QFT, the ℤ∼N × ℤN symmetry must be spontaneously broken to an order-N subgroup H, and we can classify the 4d gapped phases by specifying H. This establishes the 1-to-1 correspondence between the two classification schemes for gapped phases of 4d gauge theories: one is the conventional Wilson-’t Hooft classification, and the other is the modern classification using the spontaneous breaking of 4d 1-form symmetry enriched with symmetry-protected topological states.

この論文で使われている画像

参考文献

[1] K.G. Wilson, Confinement of quarks, Phys. Rev. D 10 (1974) 2445 [INSPIRE].

[2] G. ’t Hooft, On the phase transition towards permanent quark confinement, Nucl. Phys. B

138 (1978) 1 [INSPIRE].

[3] G. ’t Hooft, A property of electric and magnetic flux in non-Abelian gauge theories, Nucl.

Phys. B 153 (1979) 141 [INSPIRE].

[4] G. ’t Hooft, Topology of the gauge condition and new confinement phases in non-Abelian

gauge theories, Nucl. Phys. B 190 (1981) 455 [INSPIRE].

[5] O. Aharony, N. Seiberg and Y. Tachikawa, Reading between the lines of four-dimensional

gauge theories, JHEP 08 (2013) 115 [arXiv:1305.0318] [INSPIRE].

[6] A. Kapustin and N. Seiberg, Coupling a QFT to a TQFT and duality, JHEP 04 (2014) 001

[arXiv:1401.0740] [INSPIRE].

[7] D. Gaiotto, A. Kapustin, N. Seiberg and B. Willett, Generalized global symmetries, JHEP

02 (2015) 172 [arXiv:1412.5148] [INSPIRE].

[8] D. Gaiotto, A. Kapustin, Z. Komargodski and N. Seiberg, Theta, time reversal, and

temperature, JHEP 05 (2017) 091 [arXiv:1703.00501] [INSPIRE].

[9] H. Shimizu and K. Yonekura, Anomaly constraints on deconfinement and chiral phase

transition, Phys. Rev. D 97 (2018) 105011 [arXiv:1706.06104] [INSPIRE].

[10] Y. Tanizaki, T. Misumi and N. Sakai, Circle compactification and ’t Hooft anomaly, JHEP

12 (2017) 056 [arXiv:1710.08923] [INSPIRE].

[11] Y. Tanizaki, Y. Kikuchi, T. Misumi and N. Sakai, Anomaly matching for the phase diagram

of massless ZN -QCD, Phys. Rev. D 97 (2018) 054012 [arXiv:1711.10487] [INSPIRE].

[12] S. Gukov and A. Kapustin, Topological quantum field theory, nonlocal operators, and gapped

phases of gauge theories, arXiv:1307.4793 [INSPIRE].

[13] A. Kapustin and R. Thorngren, Higher symmetry and gapped phases of gauge theories,

arXiv:1309.4721 [INSPIRE].

– 21 –

JHEP08(2023)013

As exactly N 2 of the ZtH [˜

e′ , e 3 ; m

˜ ′ , m3 ] equal 1 while all the others vanish, this equality

can be true iff exp 2πi

e·m

˜′ −m

˜ · e˜′ ) = 1 for each light flux (˜

e′ , e 3 ; m

˜ ′ , m3 ). □

N (˜

[14] A. Kapustin and R. Thorngren, Topological field theory on a lattice, discrete theta-angles and

confinement, Adv. Theor. Math. Phys. 18 (2014) 1233 [arXiv:1308.2926] [INSPIRE].

[15] T. Lan, L. Kong and X.-G. Wen, Classification of (3 + 1)D bosonic topological orders: the

case when pointlike excitations are all bosons, Phys. Rev. X 8 (2018) 021074 [INSPIRE].

[16] T. Johnson-Freyd, On the classification of topological orders, Commun. Math. Phys. 393

(2022) 989 [arXiv:2003.06663] [INSPIRE].

[17] R. Thorngren, Topological quantum field theory, symmetry breaking, and finite gauge theory

in 3 + 1D, Phys. Rev. B 101 (2020) 245160 [arXiv:2001.11938] [INSPIRE].

[19] A. Karasik and Z. Komargodski, The bi-fundamental gauge theory in 3 + 1 dimensions: the

vacuum structure and a cascade, JHEP 05 (2019) 144 [arXiv:1904.09551] [INSPIRE].

[20] C. Córdova, D.S. Freed, H.T. Lam and N. Seiberg, Anomalies in the space of coupling

constants and their dynamical applications II, SciPost Phys. 8 (2020) 002

[arXiv:1905.13361] [INSPIRE].

[21] E. Witten, Dyons of charge eθ/2π, Phys. Lett. B 86 (1979) 283 [INSPIRE].

[22] E. Sharpe, Notes on generalized global symmetries in QFT, Fortsch. Phys. 63 (2015) 659

[arXiv:1508.04770] [INSPIRE].

[23] Y. Tachikawa, On gauging finite subgroups, SciPost Phys. 8 (2020) 015 [arXiv:1712.09542]

[INSPIRE].

[24] C. Córdova, T.T. Dumitrescu and K. Intriligator, Exploring 2-group global symmetries,

JHEP 02 (2019) 184 [arXiv:1802.04790] [INSPIRE].

[25] Y. Tanizaki and M. Ünsal, Modified instanton sum in QCD and higher-groups, JHEP 03

(2020) 123 [arXiv:1912.01033] [INSPIRE].

[26] Y. Hidaka, M. Nitta and R. Yokokura, Higher-form symmetries and 3-group in axion

electrodynamics, Phys. Lett. B 808 (2020) 135672 [arXiv:2006.12532] [INSPIRE].

[27] Y. Hidaka, M. Nitta and R. Yokokura, Global 3-group symmetry and ’t Hooft anomalies in

axion electrodynamics, JHEP 01 (2021) 173 [arXiv:2009.14368] [INSPIRE].

[28] A. Kapustin and M.J. Strassler, On mirror symmetry in three-dimensional Abelian gauge

theories, JHEP 04 (1999) 021 [hep-th/9902033] [INSPIRE].

[29] E. Witten, SL(2, Z) action on three-dimensional conformal field theories with Abelian

symmetry, in the proceedings of the From fields to strings: circumnavigating theoretical

physics. A conference in tribute to Ian Kogan, (2003), p. 1173 [hep-th/0307041] [INSPIRE].

[30] J.L. Cardy and E. Rabinovici, Phase structure of Zp models in the presence of a θ parameter,

Nucl. Phys. B 205 (1982) 1 [INSPIRE].

[31] J.L. Cardy, Duality and the θ parameter in Abelian lattice models, Nucl. Phys. B 205 (1982)

17 [INSPIRE].

[32] M. Honda and Y. Tanizaki, Topological aspects of 4D Abelian lattice gauge theories with the

θ parameter, JHEP 12 (2020) 154 [arXiv:2009.10183] [INSPIRE].

[33] Y. Hayashi and Y. Tanizaki, Non-invertible self-duality defects of Cardy-Rabinovici model

and mixed gravitational anomaly, JHEP 08 (2022) 036 [arXiv:2204.07440] [INSPIRE].

– 22 –

JHEP08(2023)013

[18] Y. Tanizaki and Y. Kikuchi, Vacuum structure of bifundamental gauge theories at finite

topological angles, JHEP 06 (2017) 102 [arXiv:1705.01949] [INSPIRE].

[34] C. Vafa and E. Witten, A strong coupling test of S duality, Nucl. Phys. B 431 (1994) 3

[hep-th/9408074] [INSPIRE].

[35] R. Donagi and E. Witten, Supersymmetric Yang-Mills theory and integrable systems, Nucl.

Phys. B 460 (1996) 299 [hep-th/9510101] [INSPIRE].

[36] N. Dorey, An elliptic superpotential for softly broken N = 4 supersymmetric Yang-Mills

theory, JHEP 07 (1999) 021 [hep-th/9906011] [INSPIRE].

[37] J. Polchinski and M.J. Strassler, The string dual of a confining four-dimensional gauge

theory, hep-th/0003136 [INSPIRE].

[39] M. den Nijs and K. Rommelse, Preroughening transitions in crystal surfaces and

valence-bond phases in quantum spin chains, Phys. Rev. B 40 (1989) 4709.

[40] F.D.M. Haldane, Nonlinear field theory of large spin Heisenberg antiferromagnets.

Semiclassically quantized solitons of the one-dimensional easy axis Néel state, Phys. Rev.

Lett. 50 (1983) 1153 [INSPIRE].

[41] I. Affleck, T. Kennedy, E.H. Lieb and H. Tasaki, Rigorous results on valence bond ground

states in antiferromagnets, Phys. Rev. Lett. 59 (1987) 799 [INSPIRE].

[42] T. Kennedy and H. Tasaki, Hidden symmetry breaking and the Haldane phase in S = 1

quantum spin chains, Commun. Math. Phys. 147 (1992) 431.

[43] T. Kennedy and H. Tasaki, Hidden Z2 × Z2 symmetry breaking in Haldane-gap

antiferromagnets, Phys. Rev. B 45 (1992) 304 [INSPIRE].

[44] M. Oshikawa, Hidden Z2 ∗ Z2 symmetry in quantum spin chains with arbitrary integer spin,

J. Phys. Cond. Mat. 4 (1992) 7469.

[45] L. Li, M. Oshikawa and Y. Zheng, Non-invertible duality transformation between SPT and

SSB phases, arXiv:2301.07899 [INSPIRE].

– 23 –

JHEP08(2023)013

[38] J.A. Damia et al., Non-invertible symmetries along 4d RG flows, arXiv:2305.17084

[INSPIRE].

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る