リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Semiclassics with 't Hooft flux background for QCD with 2-index quarks」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Semiclassics with 't Hooft flux background for QCD with 2-index quarks

Tanizaki, Yuya Unsal, Mithat 京都大学 DOI:10.1007/JHEP08(2022)038

2022.08

概要

We study quantum chromodynamics including the two-index symmetric or anti-symmetric quark (QCD(Sym/ASym)) on small ℝ² × T² with a suitable magnetic flux. We first discuss the ’t Hooft anomaly of these theories and claim that discrete chiral symmetry should be spontaneously broken completely to satisfy the anomaly matching condition. The T² compactification with the magnetic flux preserves the ’t Hooft anomaly, and the 2d effective theory is constrained by the same anomaly of 4d QCD(Sym/ASym). We demonstrate the spontaneous breakdown of chiral symmetry using the dilute gas of center vortices, which confirms the prediction of the ’t Hooft anomaly. We also find that each vacuum maintains the charge conjugation symmetry, and this gives affirmative support for the nonperturbative large-N orientifold equivalence between QCD(Sym/ASym) and N = 1 supersymmetric SU(N) Yang-Mills theory.

参考文献

[1] Y. Tanizaki and M. Ünsal, Center vortex and confinement in Yang-Mills theory and QCD with anomaly-preserving compactifications, PTEP 2022 (2022) 04A108 [arXiv:2201.06166] [INSPIRE].

[2] G. ’t Hooft, A Property of Electric and Magnetic Flux in Nonabelian Gauge Theories, Nucl. Phys. B 153 (1979) 141 [INSPIRE].

[3] G. ’t Hooft, On the Phase Transition Towards Permanent Quark Confinement, Nucl. Phys. B 138 (1978) 1 [INSPIRE].

[4] J.M. Cornwall, Quark Confinement and Vortices in Massive Gauge Invariant QCD, Nucl. Phys. B 157 (1979) 392 [INSPIRE].

[5] H.B. Nielsen and P. Olesen, A Quantum Liquid Model for the QCD Vacuum: Gauge and Rotational Invariance of Domained and Quantized Homogeneous Color Fields, Nucl. Phys. B 160 (1979) 380 [INSPIRE].

[6] J. Ambjørn and P. Olesen, A Color Magnetic Vortex Condensate in QCD, Nucl. Phys. B 170 (1980) 265 [INSPIRE].

[7] A. Gonzalez-Arroyo and A. Montero, Selfdual vortex-like configurations in SU(2) Yang-Mills theory, Phys. Lett. B 442 (1998) 273 [hep-th/9809037] [INSPIRE].

[8] A. Montero, Study of SU(3) vortex-like configurations with a new maximal center gauge fixing method, Phys. Lett. B 467 (1999) 106 [hep-lat/9906010] [INSPIRE].

[9] A. Montero, Vortex configurations in the large N limit, Phys. Lett. B 483 (2000) 309 [hep-lat/0004002] [INSPIRE].

[10] G. ’t Hooft, A Planar Diagram Theory for Strong Interactions, Nucl. Phys. B 72 (1974) 461 [INSPIRE].

[11] A. Armoni, M. Shifman and G. Veneziano, Exact results in non-supersymmetric large N orientifold field theories, Nucl. Phys. B 667 (2003) 170 [hep-th/0302163] [INSPIRE].

[12] A. Armoni, M. Shifman and G. Veneziano, Refining the proof of planar equivalence, Phys. Rev. D 71 (2005) 045015 [hep-th/0412203] [INSPIRE].

[13] M. Ünsal and L.G. Yaffe, (In)validity of large N orientifold equivalence, Phys. Rev. D 74 (2006) 105019 [hep-th/0608180] [INSPIRE].

[14] M. Shifman and M. Ünsal, QCD-like Theories on R3 × S1: A Smooth Journey from Small to Large r(S1) with Double-Trace Deformations, Phys. Rev. D 78 (2008) 065004 [arXiv:0802.1232] [INSPIRE].

[15] D. Gaiotto, A. Kapustin, Z. Komargodski and N. Seiberg, Theta, Time Reversal, and Temperature, JHEP 05 (2017) 091 [arXiv:1703.00501] [INSPIRE].

[16] Y. Tanizaki and Y. Kikuchi, Vacuum structure of bifundamental gauge theories at finite topological angles, JHEP 06 (2017) 102 [arXiv:1705.01949] [INSPIRE].

[17] Z. Komargodski, A. Sharon, R. Thorngren and X. Zhou, Comments on Abelian Higgs Models and Persistent Order, SciPost Phys. 6 (2019) 003 [arXiv:1705.04786] [INSPIRE].

[18] Z. Komargodski, T. Sulejmanpasic and M. Ünsal, Walls, anomalies, and deconfinement in quantum antiferromagnets, Phys. Rev. B 97 (2018) 054418 [arXiv:1706.05731] [INSPIRE].

[19] H. Shimizu and K. Yonekura, Anomaly constraints on deconfinement and chiral phase transition, Phys. Rev. D 97 (2018) 105011 [arXiv:1706.06104] [INSPIRE].

[20] D. Gaiotto, Z. Komargodski and N. Seiberg, Time-reversal breaking in QCD4, walls, and dualities in 2 + 1 dimensions, JHEP 01 (2018) 110 [arXiv:1708.06806] [INSPIRE].

[21] A. Kapustin and N. Seiberg, Coupling a QFT to a TQFT and Duality, JHEP 04 (2014) 001 [arXiv:1401.0740] [INSPIRE].

[22] Y. Tanizaki, Anomaly constraint on massless QCD and the role of Skyrmions in chiral symmetry breaking, JHEP 08 (2018) 171 [arXiv:1807.07666] [INSPIRE].

[23] M.M. Anber and E. Poppitz, On the baryon-color-flavor (BCF) anomaly in vector-like theories, JHEP 11 (2019) 063 [arXiv:1909.09027] [INSPIRE].

[24] M.M. Anber, Condensates and anomaly cascade in vector-like theories, JHEP 03 (2021) 191 [arXiv:2101.04132] [INSPIRE].

[25] Y. Tanizaki, T. Misumi and N. Sakai, Circle compactification and ’t Hooft anomaly, JHEP 12 (2017) 056 [arXiv:1710.08923] [INSPIRE].

[26] Y. Tanizaki, Y. Kikuchi, T. Misumi and N. Sakai, Anomaly matching for the phase diagram of massless ZN -QCD, Phys. Rev. D 97 (2018) 054012 [arXiv:1711.10487] [INSPIRE].

[27] M. Yamazaki, Relating ’t Hooft Anomalies of 4d Pure Yang-Mills and 2d CPN−1 Model, JHEP 10 (2018) 172 [arXiv:1711.04360] [INSPIRE].

[28] L. Del Debbio, M. Faber, J. Greensite and Š. Olejník, Center dominance and Z(2) vortices in SU(2) lattice gauge theory, Phys. Rev. D 55 (1997) 2298 [hep-lat/9610005] [INSPIRE].

[29] M. Faber, J. Greensite and Š. Olejník, Casimir scaling from center vortices: Towards an understanding of the adjoint string tension, Phys. Rev. D 57 (1998) 2603 [hep-lat/9710039] [INSPIRE].

[30] L. Del Debbio, M. Faber, J. Giedt, J. Greensite and Š. Olejník, Detection of center vortices in the lattice Yang-Mills vacuum, Phys. Rev. D 58 (1998) 094501 [hep-lat/9801027] [INSPIRE].

[31] K. Langfeld, O. Tennert, M. Engelhardt and H. Reinhardt, Center vortices of Yang-Mills theory at finite temperatures, Phys. Lett. B 452 (1999) 301 [hep-lat/9805002] [INSPIRE].

[32] T.G. Kovacs and E.T. Tomboulis, Vortices and confinement at weak coupling, Phys. Rev. D 57 (1998) 4054 [hep-lat/9711009] [INSPIRE].

[33] M. Engelhardt, K. Langfeld, H. Reinhardt and O. Tennert, Deconfinement in SU(2) Yang-Mills theory as a center vortex percolation transition, Phys. Rev. D 61 (2000) 054504 [hep-lat/9904004] [INSPIRE].

[34] P. de Forcrand and M. D’Elia, On the relevance of center vortices to QCD, Phys. Rev. Lett. 82 (1999) 4582 [hep-lat/9901020] [INSPIRE].

[35] J.C. Biddle, W. Kamleh and D.B. Leinweber, Visualization of center vortex structure, Phys. Rev. D 102 (2020) 034504 [arXiv:1912.09531] [INSPIRE].

[36] M. Kobayashi and T. Maskawa, Chiral symmetry and eta-x mixing, Prog. Theor. Phys. 44 (1970) 1422 [INSPIRE].

[37] M. Kobayashi, H. Kondo and T. Maskawa, Symmetry breaking of the chiral U(3) × U(3) and the quark model, Prog. Theor. Phys. 45 (1971) 1955 [INSPIRE].

[38] T. Maskawa and H. Nakajima, Spontaneous Symmetry Breaking in Vector-Gluon Model, Prog. Theor. Phys. 52 (1974) 1326 [INSPIRE].

[39] G. ’t Hooft, Computation of the Quantum Effects Due to a Four-Dimensional Pseudoparticle, Phys. Rev. D 14 (1976) 3432 [Erratum ibid. 18 (1978) 2199] [INSPIRE].

[40] T. Pantev and E. Sharpe, GLSM’s for Gerbes (and other toric stacks), Adv. Theor. Math. Phys. 10 (2006) 77 [hep-th/0502053] [INSPIRE].

[41] S. Hellerman, A. Henriques, T. Pantev, E. Sharpe and M. Ando, Cluster decomposition, T-duality, and gerby CFT’s, Adv. Theor. Math. Phys. 11 (2007) 751 [hep-th/0606034] [INSPIRE].

[42] S. Hellerman and E. Sharpe, Sums over topological sectors and quantization of Fayet-Iliopoulos parameters, Adv. Theor. Math. Phys. 15 (2011) 1141 [arXiv:1012.5999] [INSPIRE].

[43] Y. Tanizaki and M. Ünsal, Modified instanton sum in QCD and higher-groups, JHEP 03 (2020) 123 [arXiv:1912.01033] [INSPIRE].

[44] A. Cherman, T. Jacobson, Y. Tanizaki and M. Ünsal, Anomalies, a mod 2 index, and dynamics of 2d adjoint QCD, SciPost Phys. 8 (2020) 072 [arXiv:1908.09858] [INSPIRE].

[45] Z. Komargodski, K. Ohmori, K. Roumpedakis and S. Seifnashri, Symmetries and strings of adjoint QCD2, JHEP 03 (2021) 103 [arXiv:2008.07567] [INSPIRE].

[46] A. Armoni, M. Shifman and G. Veneziano, SUSY relics in one flavor QCD from a new 1/N expansion, Phys. Rev. Lett. 91 (2003) 191601 [hep-th/0307097] [INSPIRE].

[47] A. Armoni, M. Shifman and G. Veneziano, QCD quark condensate from SUSY and the orientifold large N expansion, Phys. Lett. B 579 (2004) 384 [hep-th/0309013] [INSPIRE].

[48] M. Bershadsky and A. Johansen, Large N limit of orbifold field theories, Nucl. Phys. B 536 (1998) 141 [hep-th/9803249] [INSPIRE].

[49] M. Schmaltz, Duality of nonsupersymmetric large N gauge theories, Phys. Rev. D 59 (1999) 105018 [hep-th/9805218] [INSPIRE].

[50] S. Kachru and E. Silverstein, 4-D conformal theories and strings on orbifolds, Phys. Rev. Lett. 80 (1998) 4855 [hep-th/9802183] [INSPIRE].

[51] M.J. Strassler, On methods for extracting exact nonperturbative results in nonsupersymmetric gauge theories, hep-th/0104032 [INSPIRE].

[52] P. Kovtun, M. Ünsal and L.G. Yaffe, Nonperturbative equivalences among large Nc gauge theories with adjoint and bifundamental matter fields, JHEP 12 (2003) 034 [hep-th/0311098] [INSPIRE].

[53] P. Kovtun, M. Ünsal and L.G. Yaffe, Necessary and sufficient conditions for non-perturbative equivalences of large Nc orbifold gauge theories, JHEP 07 (2005) 008 [hep-th/0411177] [INSPIRE].

[54] P. Kovtun, M. Ünsal and L.G. Yaffe, Can large Nc equivalence between supersymmetric Yang-Mills theory and its orbifold projections be valid?, Phys. Rev. D 72 (2005) 105006 [hep-th/0505075] [INSPIRE].

[55] P. van Baal, Twisted Boundary Conditions: A Nonperturbative Probe for Pure Nonabelian Gauge Theories, Ph.D. thesis, Rijksuniversiteit Utrecht, The Netherlands (1984).

[56] M. Yamazaki and K. Yonekura, From 4d Yang-Mills to 2d CPN−1 model: IR problem and confinement at weak coupling, JHEP 07 (2017) 088 [arXiv:1704.05852] [INSPIRE].

[57] A.A. Cox, E. Poppitz and F.D. Wandler, The mixed 0-form/1-form anomaly in Hilbert space: pouring the new wine into old bottles, JHEP 10 (2021) 069 [arXiv:2106.11442] [INSPIRE].

[58] M. Ünsal, Abelian duality, confinement, and chiral symmetry breaking in QCD(adj), Phys. Rev. Lett. 100 (2008) 032005 [arXiv:0708.1772] [INSPIRE].

[59] M. Ünsal, Magnetic bion condensation: A new mechanism of confinement and mass gap in four dimensions, Phys. Rev. D 80 (2009) 065001 [arXiv:0709.3269] [INSPIRE].

[60] M. Ünsal and L.G. Yaffe, Center-stabilized Yang-Mills theory: Confinement and large N volume independence, Phys. Rev. D 78 (2008) 065035 [arXiv:0803.0344] [INSPIRE].

[61] C. Choi, D. Delmastro, J. Gomis and Z. Komargodski, Dynamics of QCD3 with Rank-Two Quarks And Duality, JHEP 03 (2020) 078 [arXiv:1810.07720] [INSPIRE].

[62] S. Bolognesi, K. Konishi and M. Shifman, Patterns of symmetry breaking in chiral QCD, Phys. Rev. D 97 (2018) 094007 [arXiv:1712.04814] [INSPIRE].

[63] S. Bolognesi and K. Konishi, Dynamics and symmetries in chiral SU(N ) gauge theories, Phys. Rev. D 100 (2019) 114008 [arXiv:1906.01485] [INSPIRE].

[64] S. Bolognesi, K. Konishi and A. Luzio, Gauging 1-form center symmetries in simple SU(N ) gauge theories, JHEP 01 (2020) 048 [arXiv:1909.06598] [INSPIRE].

[65] T. Sulejmanpasic, Y. Tanizaki and M. Ünsal, Universality between vector-like and chiral quiver gauge theories: Anomalies and domain walls, JHEP 06 (2020) 173 [arXiv:2004.10328] [INSPIRE].

[66] M.M. Anber, S. Hong and M. Son, New anomalies, TQFTs, and confinement in bosonic chiral gauge theories, JHEP 02 (2022) 062 [arXiv:2109.03245] [INSPIRE].

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る