リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Characterization and ligand-binding manner of EHEP and BGL for producing biofuel from brown algae」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Characterization and ligand-binding manner of EHEP and BGL for producing biofuel from brown algae

孫, 暁梅 北海道大学

2020.03.25

概要

Dramatic increases in fuel demands globally have prompted a search for renewable energy sources. Biofuel is a promising alternative to fossil fuels because of its lower cost, renewable supply, and reduced greenhouse gas emissions. Brown algae are considered ideal feedstocks for producing biofuel because their many advantages. The cultivation does not need arable land, only use fresh water. The brown algae do not contain lignin, making the enzymatic hydrolysis of brown algae relatively easy.

The sea hare Aplysia kurodai consumes brown algae as a staple food, using β-glucosidases (akuBGLs) as catalysts for hydrolyzing the glycosidic bonds of laminarin abundant in brown algae to produce glucose, making it an excellent model for investigating the biofuel production process. However, phlorotannins which are also abundant in brown algae, inhibit the hydrolysis reaction of akuBGLs, bringing the serious problem in production of biofuel source glucose from brown algae. Interestingly, Eisenia hydrolysis enhancing protein (EHEP) identified in the digestive fluid of A. kurodai, was found recently to protect akuBGL from this inhibition by binding and then precipitating with phlorotannins, despite not possessing catalytic function. Hence, EHEP and akuBGL have high potential for the application in the biofuel industry. An understanding of phlorotannin-binding manner with EHEP and akuBGL will lead us to elucidate protective mechanisms of EHEP and the phlorotannin- inhibitory mechanism of akuBGL. Consequently, these knowledge could provide information on how increase the activity of akuBGL and how EHEP can be used recycled, and knowledge of the three- dimensional structures of akuBGL and EHEP is indispensable for this.

Because phlorotannin is very difficult to isolate from brown algae and it has been reported that tannic acid (TNA) is an analog of phlorotannins, we explore firstly the inhibitory activity of TNA for akuBGL and whether EHEP binds TNA to protect akuBGL from TNA-inhibition by analyzing the akuBGL activity using ortho-Nitrophenyl-β-galactoside (ONPG) as the substrate. The results showed that the activity of akuBGL decreased with increasing the concentration of tannic acid. About 70% activity of akuBGL was inhibited with a concentration of 40 µM TNA. When adding EHEP, the more activity of akuBGL was recovered with increasing the concentration of EHEP. About 80% activity of akuBGL was recovered with a concentration of 3.96 µM EHEP. Therefore, instead of phlorotannins, we used TNA to investigate the protective mechanism of EHEP and the phlorotannin-inhibitory mechanism.

To understand the TNA-binding manner of EHEP, we tried to analyze structures of EHEP in apo and TNA-binding form. Because EHEP is a novel and unique protein, with no structures of homologous proteins were reported, we determined the structure of EHEP by single-wavelength anomalous dispersion using sulfur atoms in the native protein as scattering factors (native-SAD) using a long wavelength. To obtain the structure of EHEP complexed with TNA (EHEP-TNA), we attempted to soak apo crystal into TNA solution for one month. The structure of EHEP consists of three chitin- binding domains (ChBD1, ChBD2, and ChBD3) linked by two long loops. In the EHEP-TNA structure, TNA is located on the surface of EHEP, and outmost five gallic acids of TNA cannot be visualized due to structural disorder. The TNA-binding pocket was formed by C-terminal α-helix of ChBD1, N- terminal α-helix of ChBD2, and middle part (loop) of ChBD3 with the help of two linker loops. TNA bound to EHEP by hydrogen bond and hydrophobic interactions, and the binding did not induce large conformation changes. Based on structural information, we consider that precipitation of EHEP with TNA should be recovered and successfully dissolve the precipitate of EHEP-TNA using buffer with alkaline pH.

Furthermore, we determined the structure of akuBGL. The structure consists of two GH1 domains (GH1 domain1, 29-492 GH1-DI and GH1 domain2, 513-974: GH1-DII) which adopt almost the same structure with a rmsd of 0.59 Å for 371 Cα atoms (40.47 % sequence identity). This is the first time to visualize the structure that contains two GH1 domains of BGLs. As other structures of GH1 family enzymes, each GH1 domain exhibits a classical (𝛽/𝛼)8 -barrel fold. D2 domain processes an active site containing two conserved carboxylic acid residues (E675, E885), however, the first catalytic residue in D1 domain was mutated to D192. The two-domain architecture might represent a specific adaption towards brown algae. Moreover, docking was performed to analysis the inhibition mechanism of tannic acid with akuBGL.

この論文で使われている画像

参考文献

Adamczyk, B., Simon, J., Kitunen, V., Adamczyk, S. & Smolander, A. (2017). ChemistryOpen 6, 610-614.

Adams, P. D., Afonine, P. V., Bunkoczi, G., Chen, V. B., Davis, I. W., Echols, N., Headd, J. J., Hung, L. W., Kapral, G. J., Grosse-Kunstleve, R. W., McCoy, A. J., Moriarty, N. W., Oeffner, R., Read, R. J., Richardson, D. C., Richardson, J. S., Terwilliger, T. C. & Zwart, P. H. (2010). Acta Crystallogr D Biol Crystallogr 66, 213-221.

Amiri, M., Diekmann, L., von Kockritz-Blickwede, M. & Naim, H. Y. (2015). Nutrients 7, 7209-7230.

Canon, F., Pate, F., Cheynier, V., Sarni-Manchado, P., Giuliani, A., Perez, J., Durand, D., Li, J. & Cabane, B. (2013). Langmuir 29, 1926-1937.

Chuenchor, W., Pengthaisong, S., Robinson, R. C., Yuvaniyama, J., Oonanant, W., Bevan, D. R., Esen, A., Chen, C. J., Opassiri, R., Svasti, J. & Cairns, J. R. (2008). J Mol Biol 377, 1200-1215.

Chuenchor, W., Pengthaisong, S., Robinson, R. C., Yuvaniyama, J., Svasti, J. & Cairns, J. R. (2011). J Struct Biol 173, 169-179.

Deaville, E. R., Green, R. J., Mueller-Harvey, I., Willoughby, I. & Frazier, R. A. (2007). J Agric Food Chem 55, 4554-4561.

Ellabban, O., Abu-Rub, H. & Blaabjerg, F. (2014). Renewable and Sustainable Energy Reviews 39, 748-764.

Emsley, P. & Cowtan, K. (2004). Acta Crystallogr D Biol Crystallogr 60, 2126-2132. Enquist-Newman, M., Faust, A. M., Bravo, D. D., Santos, C. N., Raisner, R. M., Hanel, A., Sarvabhowman, P., Le, C., Regitsky, D. D., Cooper, S. R., Peereboom, L., Clark, A., Martinez, Y., Goldsmith, J., Cho, M. Y., Donohoue, P. D., Luo, L., Lamberson, B., Tamrakar, P., Kim, E. J., Villari, J. L., Gill, A., Tripathi, S. A., Karamchedu, P., Paredes, C. J., Rajgarhia, V., Kotlar, H. K., Bailey, R. B., Miller, D. J., Ohler, N. L., Swimmer, C. & Yoshikuni, Y. (2014). Nature 505, 239-243.

Eom, S. H., Lee, S. H., Yoon, N. Y., Jung, W. K., Jeon, Y. J., Kim, S. K., Lee, M. S. & Kim, Y. M. (2012). J Sci Food Agric 92, 2084-2090.

Evans, P. R. & Murshudov, G. N. (2013). Acta Crystallogr D Biol Crystallogr 69, 1204- 1214.

Fadel, F., Zhao, Y., Cousido-Siah, A., Ruiz, F. X., Mitschler, A. & Podjarny, A. (2016). PLoS One 11, e0154190.

Frazier, R. A., Papadopoulou, A., Mueller-Harvey, I., Kissoon, D. & Green, R. J. (2003). Journal of Agricultural and Food Chemistry 51, 5189-5195.

Guillen, D., Sanchez, S. & Rodriguez-Sanoja, R. (2010). Appl Microbiol Biotechnol 85, 1241-1249.

Hakulinen, N., Paavilainen, S., Korpela, T. & Rouvinen, J. (2000). J Struct Biol 129, 69-79.

Hayashi, Y., Okino, N., Kakuta, Y., Shikanai, T., Tani, M., Narimatsu, H. & Ito, M. (2007). J Biol Chem 282, 30889-30900.

Hendrickson, W. A. & Teeter, M. M. (1981). Nature 290, 107-113.

Hollebeke, J., Van Damme, P. & Gevaert, K. (2012). Biol Chem 393, 291-298. Holm, L. & Rosenstrom, P. (2010). Nucleic Acids Res 38, W545-549.

Hurlburt, N. K., Chen, L. H., Stergiopoulos, I. & Fisher, A. J. (2018). PLoS Pathog 14, e1007263.

Jacob, R., Peters, K. & Naim, H. Y. (2002). J Biol Chem 277, 8217-8225.

Jeng, W. Y., Wang, N. C., Lin, C. T., Chang, W. J., Liu, C. I. & Wang, A. H. (2012). Acta Crystallogr D Biol Crystallogr 68, 829-838.

Jie Fu, J. x., Zhang, Y. & Lu, X. (2015). Asian Journal of Chemistry 27, 3328-3332. Jung, H. A., Oh, S. H. & Choi, J. S. (2010). Bioorg Med Chem Lett 20, 3211-3215. Kabsch, W. (2010). Acta Crystallogr D Biol Crystallogr 66, 125-132.

Kanakis, C. D., Hasni, I., Bourassa, P., Tarantilis, P. A., Polissiou, M. G. & Tajmir- Riahi, H. A. (2011). Food Chem 127, 1046-1055.

Kayukawa, C. T. M., de Oliveira, M. A. S., Kaspchak, E., Sanchuki, H. B. S., Igarashi- Mafra, L. & Mafra, M. R. (2019). Food Chem 275, 346-353.

Kellogg, J., Grace, M. H. & Lila, M. A. (2014). Marine Drugs 12, 5277-5294. Ketudat Cairns, J. R. & Esen, A. (2010). Cell Mol Life Sci 67, 3389-3405.

Kitago, Y., Watanabe, N. & Tanaka, I. (2005). Acta Crystallogr D Biol Crystallogr 61, 1013-1021.

Kopetz, H. (2013). Nature 494, 29-31.

La Barre, S., Potin, P., Leblanc, C. & Delage, L. (2010). Mar Drugs 8, 988-1010.

Lange, P. F. & Overall, C. M. (2011). Nat Methods 8, 703-704.

Lee, S., Choi, J., Mohanty, J., Sousa, L. P., Tome, F., Pardon, E., Steyaert, J., Lemmon, M. A., Lax, I. & Schlessinger, J. (2018). Nature 553, 501-505.

Li, X. & Ni, T. (2016). J Biol Phys 42, 415-434.

Li, Y., Fu, X., Duan, D., Liu, X., Xu, J. & Gao, X. (2017). Mar Drugs 15.

Lin, Y. & Tanaka, S. (2006). Appl Microbiol Biotechnol 69, 627-642.

Luo, Q., Zeng, S., Shu, Y., Fu, Z., Zhao, H. & Su, S. (2018). RSC Advances 8, 17151- 17158.

Marana, S. R., Mendonca, L. M., Andrade, E. H., Terra, W. R. & Ferreira, C. (2003). Eur J Biochem 270, 4866-4875.

Matthews, B. W. (1968). J.Mol.Biol 33, 491-497.

McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D., Storoni, L. C. & Read, R. J. (2007). J Appl Crystallogr 40, 658-674.

Mueller, G. A., Randall, T. A., Glesner, J., Pedersen, L. C., Perera, L., Edwards, L. L., DeRose, E. F., Chapman, M. D., London, R. E. & Pomes, A. (2016). Clin Exp Allergy 46, 365-376.

Ozdal, T., Capanoglu, E. & Altay, F. (2013). Food Research International 51, 954-970. Papadopoulou, A., Green, R. J. & Frazier, R. A. (2005). J Agric Food Chem 53, 158- 163.

Poncet-Legrand, C., Gautier, C., Cheynier, V. & Imberty, A. (2007). Journal of Agricultural and Food Chemistry 55, 9235-9240.

Rosano, G. L. & Ceccarelli, E. A. (2014). Front Microbiol 5, 172.

Roy, D., Dutta, S., Maity, S. S., Ghosh, S., Singha Roy, A., Ghosh, K. S. & Dasgupta, S. (2012). Journal of Luminescence 132, 1364-1375.

Sabbadin, F., Pesante, G., Elias, L., Besser, K., Li, Y., Steele-King, C., Stark, M., Rathbone, D. A., Dowle, A. A., Bates, R., Shipway, J. R., Cragg, S. M., Bruce, N. C. & McQueen-Mason, S. J. (2018). Biotechnol Biofuels 11, 59.

Sakamoto, K., Uji, S., Kurokawa, T. & Toyohara, H. (2009). Gene 435, 72-79.

Sastry, G. M., Adzhigirey, M., Day, T., Annabhimoju, R. & Sherman, W. (2013). Journal of Computer-Aided Molecular Design 27, 221-234.

Sheldrick, G. M. (2010). Acta Crystallogr D Biol Crystallogr 66, 479-485.

Shibata, T., Fujimoto, K., Nagayama, K., Yamaguchi, K. & Nakamura, T. (2002). International Journal of Food Science and Technology 37, 703-709. Silva, R. D. & Martinho, R. G. (2015). Proteomics 15, 2402-2409.

Suetake, T., Tsuda, S., Kawabata, S., Miura, K., Iwanaga, S., Hikichi, K., Nitta, K. & Kawano, K. (2000). J Biol Chem 275, 17929-17932.

Tamaki, F. K., Souza, D. P., Souza, V. P., Ikegami, C. M., Farah, C. S. & Marana, S. R. (2016). PLoS One 11, e0167978.

Tsuji, A., Kuwamura, S., Shirai, A. & Yuasa, K. (2017). PLoS One 12, e0170669. Tsuji, A., Tominaga, K., Nishiyama, N. & Yuasa, K. (2013). PLoS One 8, e65418. Van Alstyne, K. L. & Paul, V. J. (1990). Oecologia 84, 158-163.

Watrelot, A. A., Renard, C. M. G. C. & Le Bourvellec, C. (2015). Lwt-Food Science and Technology 63, 376-382.

Wei, N., Quarterman, J. & Jin, Y. S. (2013). Trends Biotechnol 31, 70-77.

Wu, X., Dey, R., Wu, H. U. I., Liu, Z., He, Q. & Zeng, X. (2013). International Journal of Dairy Technology 66, 7-13.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る