リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Biomass Feedstocks for Liquid Biofuels Production in Hawaii & Tropical Islands: A Review」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Biomass Feedstocks for Liquid Biofuels Production in Hawaii & Tropical Islands: A Review

USMAN Muhammad 程 爍 クロス ジェフリー スコット Muhammad Usman Shuo Cheng Jeffrey Scott Cross 東京工業大学 DOI:https://doi.org/10.14710/ijred.2022.39285

2022.02.01

概要

Many tropical islands, including Aruba, Seychelles, Mauritius, and Pacific Island countries, are entirely dependent on importing fossil fuels to meet their energy demands. Due to global warming, improving energy use efficiency and developing regionally available renewable energy resources are necessary to reduce carbon emissions. This review analyzed and identified biomass feedstocks to produce liquid biofuels targeting tropical islands, particularly focusing on Hawaii as a case study. Transportation and energy generation sectors consume 25.5% and 11.6%, respectively, of Hawaii's imported fossil fuels. Various nonedible feedstocks with information on their availability, production, and average yields of oils, fiber, sugars, and lipid content for liquid biofuels production are identified to add value to the total energy mix. The available biomass conversion technologies and production costs are summarized. In addition, a section on potentially using sewage sludge to produce biodiesel is also included. Based on a comparative analysis of kamani, croton, pongamia, jatropha, energycane, Leucaena hybrid, gliricidia, and eucalyptus feedstock resources, this study proposes that Hawaii and other similar tropical regions can potentially benefit from growing and producing economical liquid biofuels locally, especially for the transportation and electricity generation sectors.

この論文で使われている画像

参考文献

Abbas, A., & Ansumali, S. (2010). Global Potential of Rice Husk as a Renewable Feedstock for Ethanol Biofuel Production. BioEnergy Research, 3(4), 328–334. https://doi.org/10.1007/s12155-010-9088-0

Ahmad, A. A., Zawawi, N. A., Kasim, F. H., Inayat, A., & Khasri, A. (2016). Assessing the gasification performance of biomass: A review on biomass gasification process conditions, optimization and economic evaluation. Renewable and Sustainable Energy Reviews, 53, 1333– 1347. https://doi.org/10.1016/j.rser.2015.09.030

Aliyu, B., Agnew, B., & Douglas, S. (2010). Croton megalocarpus (Musine) seeds as a potential source of bio-diesel. Biomass and Bioenergy, 34(10), 1495–1499. https://doi.org/10.1016/j.biombioe.2010.04.026

Amanda, B. (2019, April 22). Geography of Hawaii Facts & Information. ThoughtCo. https://www.thoughtco.com/geography-of-hawaii- 1435728

Amirta, R., Yuliansyah, A.E.M., Ananto, B.R., Setiyono, B., Haqiqi, M.T., Septiana, H.A., Lodong, M., & Oktavianto, R.N. (2016). Plant diversity and energy potency of community forest in East Kalimantan, Indonesia: Searching for fast growing wood species for energy production. Nusant. Biosci. 22–31. https://doi.org/10.13057/nusbiosci/n080106

Anfilatov, A. A., & Chuvashev, A. N. (2020). Effect of methanol use in the engine on the workflow. IOP Conference Series: Materials Science and Engineering, 062064. https://doi.org/10.1088/1757-899x/862/6/062064

Angulo-Mosquera, L. S., Alvarado-Alvarado, A. A., Rivas-Arrieta, M. J., Cattaneo, C. R., Rene, E. R., & García-Depraect, O. (2021). Production of solid biofuels from organic waste in developing countries: A review from sustainability and economic feasibility perspectives. Science of The Total Environment, 795, 148816. https://doi.org/10.1016/j.scitotenv.2021.148816

Arazo, R. O., de Luna, M. D. G., & Capareda, S. C. (2017). Assessing biodiesel production from sewage sludge- derived bio-oil. Biocatalysis and Agricultural Biotechnology, 10, 189–196. https://doi.org/10.1016/j.bcab.2017.03.011

Armbruster, W.J., Coyle, & W.T. (2006). Pacific Food System Outlook 2006–2007: The Future Role of Biofuels. Pacific Economic Cooperation Council, Singapore. http://www.pecc.org/food/ pfso- singapore2006/PECC_Annual_06_07.pdf

Asadullah, M. (2014). Barriers of commercial power generation using biomass gasification gas: A review. Renewable and Sustainable Energy Reviews, 29, 201–215. https://doi.org/10.1016/j.rser.2013.08.074

Atapattu, A. A. A. J., Pushpakumara, D. K. N. G., Rupasinghe, W. M. D., Senarathne, S. H. S. & Raveendra, S. A. S. T. (2017). Potential of Gliricidia sepium as a fuelwood species for sustainable energy generation in Sri Lanka. Agricultural Research Journal, 54(1), 34. https://doi.org/10.5958/2395-146x.2017.00006.0

Bailis, R. E., & Baka, J. E. (2010). Greenhouse Gas Emissions and Land Use Change from Jatropha Curcas-Based Jet Fuel in Brazil. Environmental Science & Technology, 44(22), 8684–8691. https://doi.org/10.1021/es1019178

Baloch, P. A., Abro, B. A., Chandio, A. S., Depar, N., & Ansari M. A. (2015). Growth and yield response of Maize to integrated use of Gliricidia sepium, farm manure and N.P.K. fertilizers. Pak. J. Agri., Agric. Eng., Vet. Sci. 31 (1), 14-23.

Baste, S. V., Bhosale, A. V., & Chavan, S. B. (2013). Emission Characteristics of Pongamia pinnata (Karanja) Biodiesel and Its Blending up to 100% in a C.I. Engine. Res. J. Agric. For. Sci. 1 (7), 1-5.

Battie Laclau, P., & Laclau, J. P. (2009). Growth of the whole root system for a plant crop of sugarcane under rainfed and irrigated environments in Brazil. Field Crops Research, 114(3), 351–360. https://doi.org/10.1016/j.fcr.2009.09.004

Beck, R. W. (2006). Waste Characterization Study, City and County of Honolulu, Final Report, April 2007. at http://opala.org/pdfs/solid_waste/2006%20Final%20Wast e%20Characterization%20Report.pdf

Belal E. B. (2013). Bioethanol production from rice straw residues. Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology], 44(1), 225–234. https://doi.org/10.1590/S1517-83822013000100033

Biswas, B., Kazakoff, S. H., Jiang, Q., Samuel, S., Gresshoff, P. M., & Scott, P. T. (2013). Genetic and Genomic Analysis of the Tree Legume Pongamia pinnata as a Feedstock for Biofuels. The Plant Genome, 6(3). https://doi.org/10.3835/plantgenome2013.05.0015

Bobade, S. N., & Khyade, V. B. (2012). Detail study on the Properties of Pongamia pinnata (Karanja) for the Production of Biofuel. Res. J. Chem. Sci., 2 (7), 16-20.

Boerrigter, H., & Rauch, R. (2005). Review of applications of gases from biomass gasification. In Syngas production and utilisation; The Netherlands, pp 211-230.

Botero, C. D., Restrepo, D. L., & Cardona, C. A. (2017). A comprehensive review on the implementation of the biorefinery concept in biodiesel production plants. Biofuel Research Journal, 4(3), 691–703. https://doi.org/10.18331/brj2017.4.3.6

Brewbaker, J. (2013).' KX4-Hawaii', Seedless Interspecific Hybrid Leucaena. HortScience, 48 (3), 390-391. https://doi.org/10.21273/HORTSCI.48.3.390

Brewbaker, J. L. (2008). Registration of KX2-Hawaii, Interspecific-Hybrid Leucaena. Journal of Plant Registrations, 2(3), 190–193. https://doi.org/10.3198/jpr2007.05.0298crc

Brown, R. C. (2019). Thermochemical Processing of Biomass: Conversion into Fuels, Chemicals and Power (Wiley Series in Renewable Resource) (2nd ed.). Wiley.

Buratti, C., Belloni, E., Lascaro, E., Merli, F., & Ricciardi, P. (2018). Rice husk panels for building applications: thermal, acoustic and environmental characterization and comparison with other innovative recycled waste materials. Constr. Build. Mater. 171, 338–349. https://doi.org/10.1016/j.conbuildmat.2018.03.089

Cabrera, M., Díaz-López, J. L., Agrela, F., & Rosales, J. (2020). Eco-Efficient Cement-Based Materials Using Biomass Bottom Ash: A Review. Applied Sciences, 10(22), 8026. https://doi.org/10.3390/app10228026

Campbell, J. E., Lobell, D. B., Genova, R. C., & Field, C. B. (2008). The Global Potential of Bioenergy on Abandoned Agriculture Lands. Environmental Science & Technology, 42(15), 5791–5794. https://doi.org/10.1021/es800052w

Carr, M. K. V., & Knox, J. W. (2011). The water relations and irrigation requirements of sugarcane (Saccharum officinarum): A REVIEW. Experimental Agriculture, 47(1), 1–25. https://doi.org/10.1017/s0014479710000645

Carvalho-Netto, O. V., Bressiani, J. A., Soriano, H. L., Fiori, C. S., Santos, J. M., Barbosa, G. V., Xavier, M. A., Landell, M. G., & Pereira, G. A. (2014). The potential of the energy cane as the main biomass crop for the cellulosic industry. Chemical and Biological Technologies in Agriculture, 1(1). https://doi.org/10.1186/s40538-014-0020-2

Chainey, R. (2015). Which countries waste the most food? World Economic Forum. https://www.weforum.org/agenda/2015/08/which- countries-waste-the-most-food/

Chuvashev, A. N., & Chuprakov, A. I. (2020). Analysis of the use of methanol with a pilot portion diesel fuel. IOP Conference Series: Materials Science and Engineering, 062089. https://doi.org/10.1088/1757-899x/862/6/062089

Civilsdaily. (2017). Part 2 | Important Food Crops (Rice, Wheat, Maize, Millets, Pulses and Barley) and Horticultural Crops –. Civilsdaily. Retrieved October 21, 2021, from https://www.civilsdaily.com/important-food-crops-rice- wheat-maize-millets-pulses-geographical-conditions- producing-areas-important-varieties-horticulture-fruits- vegetables/

Cloin, J., & Vaitilingom, G. (2008). Sustainable biofuels in the Pacific - an overview, Pacific regional biofuel workshop, November 2008, Nadi, Fiji Islands. https://agritrop.cirad.fr/570730/1/document_570730.pdf

Covey, G., Rainy, T. J., & Shore D. (2006). The potential for bagasse pulping in Australia. Appita J., 59 (1), 17-22.

Craker, L. E. (2009). A Guide to Medicinal Plants—An Illustrated, Scientific and Medicinal Approach, by Koh Hwee Ling, Chua Tung Kian, and Tan Chay Hoon. Journal of Herbs, Spices & Medicinal Plants, 15(3), 290. https://doi.org/10.1080/10496470903379027

de Souza, R. B., de Menezes, J. A. S., de Souza, R. D. F. R., Dutra, E. D., & de Morais Jr, M. A. (2014). Mineral Composition of the Sugarcane Juice and Its Influence on the Ethanol Fermentation. Applied Biochemistry and Biotechnology, 175(1), 209–222. https://doi.org/10.1007/s12010-014-1258-7

Department of Business, Economic, Development and Tourism (DBEDT). (2019). Hawaii Energy facts & Figures, Hawaii State Energy Office, DBEDT.'s Monthly Energy Trends. http://dbedt.hawaii.gov/economic/energy-trends-2/

Devi, L., Ptasinski, K. J., Janssen, F. J., van Paasen, S. V., Bergman, P. C., & Kiel, J. H. (2005). Catalytic decomposition of biomass tars: use of dolomite and untreated olivine. Renewable Energy, 30(4), 565–587. https://doi.org/10.1016/j.renene.2004.07.014

Dweck, A. C., & Meadows, T. (2002). Tamanu (Calophyllum inophyllum) - the African, Asian, Polynesian and Pacific Panacea. International Journal of Cosmetic Science, 24(6), 341–348. https://doi.org/10.1046/j.1467-2494.2002.00160.x

Ebrahim, M. K., Zingsheim, O., El-Shourbagy, M. N., Moore, P. H., & Komor, E. (1998). Growth and sugar storage in sugarcane grown at temperatures below and above optimum. Journal of Plant Physiology, 153(5–6), 593–602. https://doi.org/10.1016/s0176-1617(98)80209-5

El Hage, R., Khalaf, Y., Lacoste, C., Nakhl, M., Lacroix, P., & Bergeret, A. (2019). A flame retarded chitosan binder for insulating miscanthus/recycled textile fibers reinforced biocomposites. J. Appl. Polym. Sci. 136, 47306. https://doi.org/10.1002/app.47306

Eschenhagen, A., Raj, M., Rodrigo, N., Zamora, A., Labonne, L., Evon, P., & Welemane, H. (2019). Investigation of Miscanthus and Sunflower Stalk Fiber-Reinforced Composites for Insulation Applications. Advances in Civil Engineering, 2019, 1–7. https://doi.org/10.1155/2019/9328087

Farmer, J. (2013). Trees in Paradise: A California History. W. W. Norton & Company, Inc.: New York.

Federation of Oils, Seeds & Fats Associations. (2014). https://www.fosfa.org/content/uploads/2014/11/Jatropha. pdf

Field, C. B., Campbell, J. E., & Lobell, D. B. (2007). Biomass energy: the scale of the potential resource. Trends Ecol. Evol., 23, 65-72. https://doi.org/10.1016/j.tree.2007.12.001

Folaranmi, J. (2013). Production of Biodiesel (B100) from Jatropha Oil Using Sodium Hydroxide as Catalyst. Journal of Petroleum Engineering, 2013, 1–6. https://doi.org/10.1155/2013/956479

Food and Agriculture Organization of the United Nations (FAO) (2015). Global Initiative on Food Loss and Waste Reduction, Rome. http://www.fao.org/3/a-i4068e.pdf

Food and Agriculture Organization. (2009). The State of Food and Agriculture 2009. https://www.fao.org/3/i0680e/i0680e00.htm

Food and Agriculture Organization. (2012). FAO Statistical Yearbook 2012. https://www.fao.org/3/i2490e/i2490e00.htm

Food Waste Policy. (2014). A food waste and yard waste plan for Hong Kong 2014-2022. https://www.enb.gov.hk/en/files/FoodWastePolicyEng.pdf Francis, G., Edinger, R., & Becker, K. (2005). A concept for simultaneous wasteland reclamation, fuel production and socio-economic development in degraded areas in India: Need, potential and perspectives of Jatropha plantations. Nat. Resour. Forum, 29, 12-24. https://doi.org/10.1111/j.1477-8947.2005.00109.x

Friday, J. B., & Okano, D. (2006). Calophyllum inophyllum (Kamani). In Traditional Trees of Pacific Islands: Their Culture, Environment, and Use; Elevitch, C. R., Ed.; Permanent Agriculture Resources: Holualoa, HI.

Fu, J., Turn S. Q., Takushi B. M., & Kawamata, C. L. (2016). Storage and oxidation stabilities of biodiesel derived from waste cooking oil. Fuel, 167, 89-97. https://doi.org/10.1016/j.fuel.2015.11.041

Fulton, L., Howes, T., & Hardy J. (2004). Biofuels for Transport: an International Perspective. International Energy Agency, Paris, France. https://www.cti2000.it/Bionett/All- 2004-004%20IEA%20biofuels%20report.pdf

Ghatak, H.R. (2011). Biorefineries from the perspective of sustainability: Feedstocks, products, and processes. Renew. Sustain. Energy Rev., 15, 4042–4052. https://doi.org/10.1016/j.rser.2011.07.034

Gledhill, D. (2008). The Names of Plants, 4th ed.; Cambridge University Press.

Gohawaii. (2021). the Hawaiin islands; weather. https://www.gohawaii.com/trip-planning/weather (accessed 18/6/2021)

Gour, V. K. (2006). Production Practices Including Post-Harvest Management of Jatropha curcas. In Proceedings of the Biodiesel Conference Toward Energy Independence - Focus of Jatropha, New Delhi, India, 2006; Singh, B., Swaminathan, R., Ponraj, V., Eds., pp 223-351.

Guna, V., Ilangovan, M., Hu, C., Venkatesh, K., & Reddy, N., (2019). Valorization of sugarcane bagasse by developing completely biodegradable composites for industrial applications. Ind. Crops Prod. 131, 25–31. https://doi.org/10.1016/j.indcrop.2019.01.011

Hakimi, M., Khalilullah, Goembira, F., & Ilham, Z. (2017). Engine-Compatible Biodiesel from Leucaena leucocephala Seed Oil. Journal of the Society of Automotive Engineers Malaysia, 1(2). Retrieved from http://jsaem.saemalaysia.org.my/index.php/jsaem/article/ view/48

Hanaki, K., & Portugal-Pereira J. (2018). The Effect of Biofuel Production on Greenhouse Gas Emission Reductions. In: Takeuchi K., Shiroyama H., Saito O., Matsuura M. (eds) Biofuels and Sustainability. Science for Sustainable Societies. Springer, Tokyo. https://doi.org/10.1007/978-4- 431-54895-9_6

Harper, R. J., Sochacki, S. J., Smettem, K. R. J., & Robinson, N. (2010). Bioenergy Feedstock Potential from Short- Rotation Woody Crops in a Dryland Environment†. Energy & Fuels, 24(1), 225–231. https://doi.org/10.1021/ef9005687

Hawaii Clean Energy Initiative. (2011). Hawaii State Energy Office. Retrieved 21–10-21, from http://energy.hawaii.gov/testbeds-initiatives/hcei

Hawaii Natural Energy Institute. (2019). Hawaii energy and environmental technologies initiative, Biofuel’s crop assessment. Office of Naval Research. https://www.hnei.hawaii.edu/wp- content/uploads/Biofuels-Crop-Assessment.pdf

Heller, J. (1996). Physic Nut. Jatropha curcas L. Promoting the Conservation and Use of Underutilized and Neglected Crops. 1. Institute of Plant Genetics and Crop Plant Research, Gatersleben/International Plant Genetic Resources Institute, Rome, 66 p.

Henning, R. K. (2009). The Jatropha Book. The Jatropha System: An integrated approach of rural development. https://en.calameo.com/read/0013656329b4f85182a36

Hinchee, M., Rottmann, W., Mullinax, L., Zhang, C., Chang, S., Cunningham, M., Pearson, L., & Nehra, N. (2009). Short- rotation woody crops for bioenergy and biofuels applications. In Vitro Cellular & Developmental Biology - Plant, 45(6), 619–629. https://doi.org/10.1007/s11627-009-9235-5

Hoogeveen, J., Faurès, J. M., & van de Giessen, N. (2009). Increased biofuel production in the coming decade: to what extent will it affect global freshwater resources? Irrigation and Drainage, 58(S1), S148–S160. https://doi.org/10.1002/ird.479

Hunde, T., Mamushet, D., Duguma, D., Gizachew, B., & Teketay, D. (2003). Growth and form of provenances ofEucalyptus salignaat Wondo Genet, southern Ethiopia. Australian Forestry, 66(3), 213–216. https://doi.org/10.1080/00049158.2003.10674914

IFCO. (2020). Food waste by countries: Who`s biggest waster. https://www.ifco.com/countries-with-the-least-and-most- food-waste/

Ilham, Z., Hamidon, H., Rosji, N. A., Ramli, N., & Osman, N. (2015). Extraction and Quantification of Toxic Compound Mimosine from Leucaena Leucocephala Leaves. Procedia Chemistry, 16, 164–170. https://doi.org/10.1016/j.proche.2015.12.029

International Energy Agency (IEA). (2017). Bioenergy and Biofuels. https://www.iea.org/topics/renewables/bioenergy/

Investancia, A. I. T. (2017). More on pongamia -. Investancia. https://investancia.com/what-is-pongamia/

Ioannidis, A., Chalvatzis, K. J., Li, X., Notton, G., & Stephanides, P. (2019). The case for islands’ energy vulnerability: Electricity supply diversity in 44 global islands. Renewable Energy, 143, 440–452. https://doi.org/10.1016/j.renene.2019.04.155

Jamilatun, S., Budhijanto, B., Rochmadi, R., Yuliestyan, A., Hadiyanto, H., & Budiman, A. (2019). Comparative analysis between pyrolysis products of Spirulina platensis biomass and its residues. International Journal of Renewable Energy Development, 8(2), 133. https://doi.org/10.14710/ijred.8.2.133-140

Jardé, E., Mansuy, L., & Faure, P. (2005). Organic markers in the lipidic fraction of sewage sludges. Water Research, 39(7), 1215–1232. https://doi.org/10.1016/j.watres.2004.12.024

Jayed, M., Masjuki, H., Saidur, R., Kalam, M., & Jahirul, M. (2009). Environmental aspects and challenges of oilseed produced biodiesel in Southeast Asia. Renewable and Sustainable Energy Reviews, 13(9), 2452–2462. https://doi.org/10.1016/j.rser.2009.06.023

Jazie, A. A. (2019). DBSA-Catalyzed Sewage Sludge Conversion into Biodiesel in a CSTR: RSM Optimization and RTD Study. Journal of Engineering and Technological Sciences, 51(4), 537. https://doi.org/10.5614/j.eng.technol.sci.2019.51.4.6 Jeswani, H. K., Chilvers, A., & Azapagic, A. (2020).

Environmental sustainability of biofuels: a review. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 476(2243), 20200351. https://doi.org/10.1098/rspa.2020.0351

Jingura, R. M., & Kamusoko, R. (2015). A multi-factor evaluation of Jatropha as a feedstock for biofuels: the case of sub- Saharan Africa. Biofuel Research Journal, 2(3), 254–257. https://doi.org/10.18331/brj2015.2.3.3

Jongh, J. A., van der Putten, E., & van der Putten, E. (2010). The Jatropha Handbook. FACT Foundation. https://en.calameo.com/read/001365632ebcc58ed3d51

Jongschaap, R., Corre, W., Bindraban, P., & Brandenburg, W. (2007). Claims and facts on Jatropha curcas L. Global Jatropha curcas Evaluation, Breeding and Propagation Programme; Report 158; Plant Research International B.V.: Wageningen, The Netherlands.

Jung, Y. (2021). Hawaii Has A Lot Of Agricultural Land. Very Little Of It Is Used For Growing Food. Honolulu Civil Beat. https://www.civilbeat.org/2021/02/hawaii-grown- maps/ (accessed 10/6/2021)

Kargbo, D. M. (2010). Biodiesel Production from Municipal Sewage Sludges. Energy & Fuels, 24(5), 2791–2794. https://doi.org/10.1021/ef1001106

Karmee, S. K. (2016). Liquid biofuels from food waste: Current trends, prospect and limitation. Renewable and Sustainable Energy Reviews, 53, 945–953. https://doi.org/10.1016/j.rser.2015.09.041

Karmee, S. K., & Lin, C. S. K. (2014a). Valorisation of food waste to biofuel: current trends and technological challenges. Sustainable Chemical Processes, 2(1). https://doi.org/10.1186/s40508-014-0022-1

Karmee, S. K., & Lin, C. S. K. (2014b). Lipids from food waste as feedstock for biodiesel production: Case Hong Kong. Lipid Technology, 26(9), 206–209. https://doi.org/10.1002/lite.201400044

Karp, A., & Shield, I. (2008). Bioenergy from plants and the sustainable yield challenge. New Phytologist, 179(1), 15–32. https://doi.org/10.1111/j.1469-8137.2008.02432.x Khedari, J., Charoenvai, S., & Hirunlabh, J. (2003). New insulating particleboards from durian peel and coconut coir. Building and Environment, 38(3), 435–441. https://doi.org/10.1016/s0360-1323(02)00030-6

Kibazohi, O., & Sangwan, R. (2011). Vegetable oil production potential from Jatropha curcas, Croton megalocarpus, Aleurites moluccana, Moringa oleifera and Pachira glabra: Assessment of renewable energy resources for bio- energy production in Africa. Biomass and Bioenergy, 35(3), 1352–1356. https://doi.org/10.1016/j.biombioe.2010.12.048

Kim, M., & Day, D. F. (2010). Composition of sugar cane, energy cane, and sweet sorghum suitable for ethanol production at Louisiana sugar mills. Journal of Industrial Microbiology & Biotechnology, 38(7), 803–807. https://doi.org/10.1007/s10295-010-0812-8

Kimaro, A. A. (2009). Sequential Agroforestry Systems for Improving Fuelwood Supply and Crop Yield in Semi-Arid Tanzania. Doctoral Thesis. University of Toronto, Toronto, Canada. https://tspace.library.utoronto.ca/bitstream/1807/19283/1/Kimaro_Anthony_A_200911_PhD_Thesis.pdf

Kindt, R., Lillesø, J. B., & van Breugel, P. (2007). Comparisons between original and current composition of indigenous tree species around Mount Kenya. African Journal of Ecology, 45(4), 633–644. https://doi.org/10.1111/j.1365- 2028.2007.00787.x

Kinoshita, C. & Zhou, J. (1999). "Siting Evaluation for Biomass- Ethanol Production in Hawai'i," Prepared for National Renewable Energy Laboratory, Department of Biosystems Engineering, University of Hawai'i, Honolulu, Hawai'I. https://www.hawaiicountycdp.info/hamakua- cdp/about-the-hamakua-cdp-planning-area/hamakua- industries-resources- research/DBET%20bioethanol%201999.pdf/at_download/ file

Kituyi, E., Marufu, L., O. Wandiga, S., O. Jumba, I., O. Andreae, M., & Helas, G. (2001). Biofuel availability and domestic use patterns in Kenya. Biomass and Bioenergy, 20(2), 71–82. https://doi.org/10.1016/s0961-9534(00)00071-4

Klein, B. C., Chagas, M. F., Junqueira, T. L., Rezende, M. C. A. F., Cardoso, T. D. F., Cavalett, O., & Bonomi, A. (2018). Techno-economic and environmental assessment of

renewable jet fuel production in integrated Brazilian sugarcane biorefineries. Applied Energy, 209, 290–305. https://doi.org/10.1016/j.apenergy.2017.10.079

Knothe, G., de Castro, M. E. G., & Razon, L. F. (2015). Methyl Esters (Biodiesel) from and Fatty Acid Profile of Gliricidia sepium Seed Oil. Journal of the American Oil Chemists’ Society, 92(5), 769–775. https://doi.org/10.1007/s11746-015-2634-3

Koh, L. P., & Ghazoul, J. (2008). Biofuels, biodiversity, and people: Understanding the conflicts and finding opportunities. Biological Conservation, 141(10), 2450–2460. https://doi.org/10.1016/j.biocon.2008.08.005 Kozacek, C. (2017). No room for waste: Honolulu`s sludge plant points toward more sustainable urban development. https://www.newsecuritybeat.org/2017/06/room-waste- honolulus-sludge-plant-points-sustainable-urban- development-2/

Kumar Tiwari, A., Kumar, A., & Raheman, H. (2007). Biodiesel production from jatropha oil (Jatropha curcas) with high free fatty acids: An optimized process. Biomass and Bioenergy, 31(8), 569–575. https://doi.org/10.1016/j.biombioe.2007.03.003

Kumar, A., & Sharma, S. (2008). An evaluation of multipurpose oil seed crop for industrial uses (Jatropha curcas L.): A review. Industrial Crops and Products, 28(1), 1–10. https://doi.org/10.1016/j.indcrop.2008.01.001

Kumar, A., Eskridge, K., Jones, D. D., & Hanna, M. A. (2009). Steam–air fluidized bed gasification of distillers grains: Effects of steam to biomass ratio, equivalence ratio and gasification temperature. Bioresource Technology, 100(6), 2062–2068. https://doi.org/10.1016/j.biortech.2008.10.011

Kumar, N. S., & Simon, N. (2016). In vitro antibacterial activity and phytochemical analysis of Gliricidia sepium (L.) leaf extracts. Journal of Pharmacognosy and Phytochemistry, 5 (2), 131-133. https://www.phytojournal.com/archives/2016/vol5issue2/ PartB/5-1-55.pdf

La Mantia, F.P., & Morreale, M. (2011). Green composites: a brief review. Compos. Part A Appl. Sci. Manuf. 42, 579–588. https://doi.org/10.1016/j.compositesa.2011.01.017

Larson, E. D., Jin, H., & Celik, F. E. (2009). Large-scale gasification-based coproduction of fuels and electricity from switchgrass. Biofuels, Bioproducts and Biorefining, 3(2), 174–194. https://doi.org/10.1002/bbb.137

Leal, M. R. (2007). The potential of sugarcane as an energy source. Proc. Int. Soc. Sugar Cane Technol., 26, 23-34. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1. 1.1049.4192&rep=rep1&type=pdf

Likhanov, V. A., & Lopatin, O. P. (2020). Alcohol biofuels for internal combustion engine. IOP Conference Series: Earth and Environmental Science, 062041. https://doi.org/10.1088/1755-1315/548/6/062041

Market Data Forecast. (2020). Biodiesel Market Size, Share & Trends | 2021 - 2026. Market Data Forecast. https://www.marketdataforecast.com/market- reports/biodiesel-market (accessed 1/6/2021)

Matsuoka, S., Bressiani, J., Maccheroni, W., & Fouto, I. (2015). Sugarcane bioenergy. In Sugarcane: Agricultural Production, Bioenergy and Ethanol; Elsevier Inc.: Amsterdam, The Netherlands, pp. 383–405.

Matthew, K. Loke., & James, M. (2019). Reducing Food Waste in Hawai‘i: A Primer. College of Tropical Agriculture and Human Resources. Published. https://gms.ctahr.hawaii.edu/gs/handler/getmedia.ashx? moid=65942&dt=3&g=12

Matu, E. N., & van Staden, J. (2003). Antibacterial and anti- inflammatory activities of some plants used for medicinal purposes in Kenya. Journal of Ethnopharmacology, 87(1), 35–41. https://doi.org/10.1016/s0378-8741(03)00107-7

McAloon, A., F. Taylor., W. Yee., K. & Ibsen., R. Wooley. (2000). Determining the Cost of Producing Ethanol from Corn Starch and Lignocellulosic Feedstocks. US Department of Agriculture, National Renewable Energy Laboratory, NREL/TP-580- 28893. https://doi.org/10.2172/766198

Meena D. V., Ariharan V., & Nagendra P. (2013). Nutritive Value and Potential Uses of Leucaena leucocephala as Biofuel- A Mini Review. Res. J. Pharm., Biol. Chem. Sci., 4 (1), 515- 521.

Misra, R., & Murthy, M. (2010). Straight vegetable oils usage in a compression ignition engine—A review. Renewable and Sustainable Energy Reviews, 14(9), 3005–3013. https://doi.org/10.1016/j.rser.2010.06.010

Mohibbeazam, M., Waris, A., & Nahar, N. (2005). Prospects and potential of fatty acid methyl esters of some non- traditional seed oils for use as biodiesel in India. Biomass Bioenergy, 29, 293-302. https://doi.org/10.1016/j.biombioe.2005.05.001

Monti, A., Fazio, S., Lychnaras, V., Soldatos, P., & Venturi, G. (2007). A full economic analysis of switchgrass under different scenarios in Italy estimated by BEE model. Biomass and Bioenergy, 31(4), 177–185. https://doi.org/10.1016/j.biombioe.2006.09.001

Morgan, T. J., Turn, S. Q., Sun, N., & George, A. (2016). Fast Pyrolysis of Tropical Biomass Species and Influence of Water Pretreatment on Product Distributions. PLOS ONE, 11(3), e0151368. https://doi.org/10.1371/journal.pone.0151368

Morgan, T. J., Youkhana, A., Turn, S. Q., Ogoshi, R., & Garcia- Pérez, M. (2019). Review of Biomass Resources and Conversion Technologies for Alternative Jet Fuel Production in Hawai’i and Tropical Regions. Energy & Fuels, 33(4), 2699–2762. https://doi.org/10.1021/acs.energyfuels.8b03001

Morgan, T. J., Youkhana, A., Turn, S. Q., Ogoshi, R., & Garcia- Pérez, M. (2019). Review of Biomass Resources and Conversion Technologies for Alternative Jet Fuel Production in Hawai’i and Tropical Regions. Energy & Fuels, 33(4), 2699–2762. https://doi.org/10.1021/acs.energyfuels.8b03001

National Geographic Society. (2012). biomass energy. https://www.nationalgeographic.org/encyclopedia/biomas s-energy/

Normile, D. (1997). Yangtze Seen as Earliest Rice Site. Science, 275(5298), 309. https://doi.org/10.1126/science.275.5298.309

Ofimagazine. (2015). https://www.ofimagazine.com/content- images/news/Pongamia.pdf

Onlamnao, K., Phromphithak, S., & Tippayawong, N. (2020). Generating Organic Liquid Products from Catalytic Cracking of Used Cooking Oil over Mechanically Mixed Catalysts. International Journal of Renewable Energy Development, 9(2), 159-166. https://doi.org/10.14710/ijred.9.2.159-166

Openshaw, K. (2000). A review of Jatropha curcas: an oil plant of unfulfilled promise. Biomass and Bioenergy, 19(1), 1–15. https://doi.org/10.1016/s0961-9534(00)00019-2

Orwa, C., Mutua, A., Kindt, R., Jamnadass, R., & Anthony, S. (2009). Agroforestree Database: A Tree Reference and Selection Guide, version 4.0 https://www.feedipedia.org/node/1650

Ozturk, A. B., Al-Shorgani, N. K. N., Cheng, S., Arasoglu, T., Gulen, J., Habaki, H., Egashira, R., Kalil, M. S., Yusoff, W. M. W., & Cross, J. S. (2020). Two-step fermentation of cooked rice with Aspergillus oryzae and Clostridium acetobutylicum YM1 for biobutanol production. Biofuels, 1–7. https://doi.org/10.1080/17597269.2020.1813000

Palma, R. A., & Carandang, W. M. (2014). Carbon Sequestration and Climate Change Impact on the Yield of Bagras (Eucalyptus deglupta Blume) in Bagras-Corn Boundary Planting Agroforestry System in Misamis Oriental and Bukidnon, Philippines. J. Environ. Sci. Manage, 17 (2), 29-37. https://ovcre.uplb.edu.ph/journals- uplb/index.php/JESAM/article/view/185/171

Parra, C. R., Corrêa-Guimarães, A., Navas-Gracia, L. M., Narváez C., R. A., Rivadeneira, D., Rodríguez, D., & Ramirez, A. D. (2020). Bioenergy on Islands: An Environmental Comparison of Continental Palm Oil vs. Local Waste Cooking Oil for Electricity Generation. Applied Sciences, 10(11), 3806. https://doi.org/10.3390/app10113806

Parthasarathy, P., & Narayanan, K. S. (2014). Hydrogen production from steam gasification of biomass: Influence of process parameters on hydrogen yield – A review. Renewable Energy, 66, 570–579. https://doi.org/10.1016/j.renene.2013.12.025

Peteet, M. D. (2006). Biodiesel Crop Implementation in Hawaii. H.A.R.C., The State of Hawaii, Department of Agriculture. http://www.hawaiiag.org/hdoa/pdf/biodiesel20report20re vised.pdf

Pham, T. P. T., Kaushik, R., Parshetti, G. K., Mahmood, R., & Balasubramanian, R. (2015). Food waste-to-energy conversion technologies: Current status and future directions. Waste Management, 38, 399–408. https://doi.org/10.1016/j.wasman.2014.12.004

Pickett, J., Anderson, D., Bowles, D., Bridgwater, T., Jarvis, P., Mortimer, N., Poliakoff, M., & Woods, J. (2008). Sustainable Biofuels: Prospects and Challenges. The Royal Society, London, UK. https://royalsociety.org/~/media/Royal_Society_Content/p olicy/publications/2008/7980.pdf

Plants for a Future. (2021). Croton tiglium Croton Oil Plant. Croton, Purging croton. PFAF Plant Database. Https://Pfaf.Org/USER/Plant.Aspx?LatinName=Croton+ tiglium. Retrieved October 20, 2021, from https://pfaf.org/USER/Plant.aspx?LatinName=Croton+ti glium

Prasad, S.S. & Singh, A. (2020). Economic feasibility of biodiesel production from Pongamia Oil on the Island of Vanua Levu. SN Appl. Sci. 2, 1086. https://doi.org/10.1007/s42452-020-2883-0

Precedence Research. (2021). Biofuels Market Size Worth Around US$ 307.01 Billion by 2030. https://www.globenewswire.com/en/search/organization/ Precedence%2520Research

Proskurina, S., Junginger, M., Heinimö, J., Tekinel, B. & Vakkilainen, E. (2019). Global biomass trade for energy— Part 2: Production and trade streams of wood pellets, liquid biofuels, charcoal, industrial roundwood and emerging energy biomass. Biofuels, Bioprod. Bioref., 13: 371-387. https://doi.org/10.1002/bbb.1858

Putri, A.P. & Gheewala, H. S. (2015). Renewability assessment of kamani (calophyllum inophyllum) biodiesel in Indonesia. Journal of sustainable energy & environment. https://www.thaiscience.info/Journals/Article/JOSE/1097 0650.pdf

Radich, A. (2004). "Biodiesel Performance, Costs and Use," Energy Information Administration, http://www.eia.doe.gov/oiaf/analysispaper/biodiesel/

Rainbolt, C., & Gilbert, R. (2008) Production of biofuel crops in Florida: Sugarcane/Energycane SS-AGR-298. http://edis.ifas.ufl.edu/ag303

Raja, S. A., Smart, D. S. R., & Lee, C. L. R. (2011). Biodiesel production from jatropha oil and its characterization. Chem. Sci., 1, 81-87. https://www.ijert.org/research/biodiesel-production-from- jatropha-oil-and-its-characterization-on-diesel-engine- IJERTV2IS110380.pdf

Rajak, R. C., Jacob, S., & Kim, B. S. (2020). A holistic zero waste biorefinery approach for macroalgal biomass utilization: A review. Science of The Total Environment, 716, 137067. https://doi.org/10.1016/j.scitotenv.2020.137067

Ramos, A., Monteiro, E., Silva, V., & Rouboa, A. (2018). Co- gasification and recent developments on waste-to-energy conversion: A review. Renewable and Sustainable Energy Reviews, 81, 380–398. https://doi.org/10.1016/j.rser.2017.07.025

Repeating Island. (2012). https://repeatingislands.com/2012/05/29/small-island- states-seek-to-end-dependence-on-imported-oil/

Research & Markets. (2020). Global Bioethanol Market (2020 to 2025). https://www.globenewswire.com/en/search/organization/ Research%2520and%2520Markets

Rice Straw Management. (2019). International Rice Research Institute. https://www.irri.org/rice-straw-management

Salveybee. (2016). What is Kamani oil. https://sites.google.com/site/salveybee/what-is-kamani-oil Sandhu, H. S., & Gilbert, R. (2014). Production of Biofuel Crops in Florida: Sugarcane/Energy Cane; UF/IFAS Extension, SS-AGR- 298. https://edis.ifas.ufl.edu/pdf/AG/AG30300.pdf

Sansaniwal, S., Pal, K., Rosen, M., & Tyagi, S. (2017b). Recent advances in the development of biomass gasification technology: A comprehensive review. Renewable and Sustainable Energy Reviews, 72, 363–384. https://doi.org/10.1016/j.rser.2017.01.038

Sansaniwal, S., Rosen, M., & Tyagi, S. (2017a). Global challenges in the sustainable development of biomass gasification: An overview. Renewable and Sustainable Energy Reviews, 80, 23–43. https://doi.org/10.1016/j.rser.2017.05.215

Scott, P. T., Pregelj, L., Chen, N., Hadler, J. S., Djordjevic, M. A., & Gresshoff, P. M. (2008). Pongamia pinnata: An Untapped Resource for the Biofuels Industry of the Future. BioEnergy Research, 1(1), 2–11. https://doi.org/10.1007/s12155-008-9003-0

Shanmugapriya, C. Y., Jothy, S. L., & Sasidharan, S. (2016). Calophyllum inophyllum: A Medical Plant with Multiple Curative Values. Res. J. Pharm., Biol. Chem. Sci., 7 (4), 1446.

Sica, P. (2021, February 1). Sugarcane Breeding for Enhanced Fiber and Its Impacts on Industrial Processes. IntechOpen. https://www.intechopen.com/chapters/75041 Sikarwar, V. S., Zhao, M., Clough, P., Yao, J., Zhong, X., Memon, M. Z., Shah, N., Anthony, E. J., & Fennell, P. S. (2016). An overview of advances in biomass gasification. Energy & Environmental Science, 9(10), 2939–2977. https://doi.org/10.1039/c6ee00935b

Sikarwar, V. S., Zhao, M., Fennell, P. S., Shah, N., & Anthony, E. J. (2017). Progress in biofuel production from gasification. Progress in Energy and Combustion Science, 61, 189–248. https://doi.org/10.1016/j.pecs.2017.04.001

Simmons, B. A., Loque, D., & Blanch, H. W. (2008). Next- generation biomass feedstocks for biofuel production. Genome Biology, 9(12), 242. https://doi.org/10.1186/gb-2008-9-12-242

Simons, A. J., & Stewart, J. L. (1994). Forage Tree Legumes in Tropical Agriculture (Gliricidia sepium, a Multipurpose Forage Tree Legume); C.A.B. International: Wallingford, Oxfordshire, U.K., pp 30-48.

Smallwood, B. (2016). In Hawaii, We Waste More Than A Fourth Of All Our Food. Honolulu Civil Beat. https://www.civilbeat.org/2016/05/food-in-hawaii-how- much-are-we-wasting/

Sochacki, S. J., Harper, R. J., Smettem, K. R. J., Dell, B., & W.U. H. (2013). Evaluating a sustainability index for nutrients in a short rotation energy cropping system. G.C.B. Bioenergy, 5, 315-326.

Spinosa, L. (2015). Wastewater Sludge: A Global Overview of the Current Status and Future Prospects. Water Intelligence Online, 6(0), 9781780402154. https://doi.org/10.2166/9781780402154

Sreedevi, T. K., Wani, S. P., Osman, M. & Singh, S. N. (2009). Participatory research and development to evaluate Pongamia seed cake as source of plant nutrient in integrated watershed management. Journal of SAT Agricultural Research, 7. pp. 1-13. ISSN 0973-3094.

Stape, J. L., Binkley, D., & Ryan, M. G. (2008). Production and carbon allocation in a clonal Eucalyptus plantation with water and nutrient manipulations. Forest Ecology and Management, 255(3–4), 920–930. https://doi.org/10.1016/j.foreco.2007.09.085

Statista. (2021a). Global biofuel production by select country 2019. https://www.statista.com/statistics/274168/biofuel- production-in-leading-countries-in-oil-equivalent/ (accessed 1/6/2021)

Statista. (2021b). Global biodiesel production by country 2019. https://www.statista.com/statistics/271472/biodiesel- production-in-selected- countries/#:%7E:text=The%20United%20States%20and%20Brazil,gallons%20of%20biodiesel%20by%202025 (accessed 1/6/2021)

Sunil, N., Varaprasad, K., Sivaraj, N., Suresh Kumar, T., Abraham, B., & Prasad, R. (2008). Assessing Jatropha curcas L. germplasm in-situ—A case study. Biomass and Bioenergy, 32(3), 198–202. https://doi.org/10.1016/j.biombioe.2007.09.003

Sutton, D., Kelleher, B., & Ross, J. R. (2001). Review of literature on catalysts for biomass gasification. Fuel Processing Technology, 73(3), 155–173. https://doi.org/10.1016/s0378-3820(01)00208-9

Teixeira, E., Mateus, R., Camões, A., & Branco, F. (2019). Quality and durability properties and life-cycle assessment of high volume biomass fly ash mortar. Construction and Building Materials, 197, 195–207. https://doi.org/10.1016/j.conbuildmat.2018.11.173

Thammasittirong, S. N. R., Chatwachirawong, P., Chamduang, T., & Thammasittirong, A. (2017). Evaluation of ethanol production from sugar and lignocellulosic part of energy cane. Industrial Crops and Products, 108, 598–603. https://doi.org/10.1016/j.indcrop.2017.07.023

The Kohala Center. (2009). Biofuels in Hawaii; A case study of Hamakua. https://kohalacenter.org/archive/pdf/Biofuels.pdf

Tijmensen, M. (2002). Exploration of the possibilities for production of Fischer Tropsch liquids and power via biomass gasification. Biomass and Bioenergy, 23(2), 129–

152. https://doi.org/10.1016/s0961-9534(02)00037-5 Tikkoo, A., Yadav, S., & Kaushik, N. (2013). Effect of irrigation, nitrogen and potassium on seed yield and oil content of Jatropha curcas in coarse textured soils of northwest India. Soil and Tillage Research, 134, 142–146. https://doi.org/10.1016/j.still.2013.08.001

Tripathi, N., Hills, C. D., Singh, R. S., & Atkinson, C. J. (2019). Biomass waste utilisation in low-carbon products: harnessing a major potential resource. Npj Climate and Atmospheric Science, 2(1). https://doi.org/10.1038/s41612- 019-0093-5

Tudsri, S., Chotchutima, S., Nakamanee, K., & Kangwansaichol, K. (2019). Dual use of leucaena for bioenergy and animal feed in Thailand. Tropical Grasslands-Forrajes Tropicales, 7(2), 193–199. https://doi.org/10.17138/tgft(7)193-199

Ugalde, L., & Perez, O. (2001). Mean Annual Volume Increment of Selected Industrial Forest Plantation Species; Forest Plantation Thematic Papers, Working Paper 1; Food and Agriculture Organization (F.A.O.) of the United Nations, Forest Resources Development Service, Forest Resources Division: Rome, Italy. https://www.fao.org/3/ac121e/ac121e.pdf

U.S. Department of Agriculture. (2021). Agricultural Land Use Baseline Study Updated. https://hdoa.hawaii.gov/blog/main/nr21- 13aglandusestudy2/

U.S. Department of Energy. (2015). (Energy Efficiency and Renewable Energy). https://www.energy.gov/sites/prod/files/2015/10/f27/hawa ii_biofuels_benefits.pdf

U.S. Energy Information Administration. (2020). Rankings Average Retail Price of Electricity. https://www.eia.gov/state/rankings/#/series/31%20(last% 20accessed%205/17/17);%20natural%20gas:%20http://ww w.eia.gov/state/rankings/

U.S. Environmental Protection Agency. (1993). United States Environmental Protection Agency, "US Consumer Product Safety Commission," The Inside Story: A Guide to Indoor Air Quality, EPA-402-R-93-013.

U.S. Environmental Protection Agency. (2021). Links and Resources About Food Recovery in Honolulu. US EPA. https://www.epa.gov/sustainable-management- food/links-and-resources-about-food-recovery-honolulu

U.S. Environmental Protection Agency. (2016). https://www.epa.gov/sites/production/files/2016- 11/documents/2014_smmfactsheet_508.pdf

Uslu, A., Faaij, A. P., & Bergman, P. (2008). Pre-treatment technologies, and their effect on international bioenergy supply chain logistics. Techno-economic evaluation of torrefaction, fast pyrolysis and pelletisation. Energy, 33(8), 1206–1223. https://doi.org/10.1016/j.energy.2008.03.007

Usman, K., Khan, S., Ghulam, S., Khan, M. U., Khan, N., Khan, M. A., & Khalil, S. K. (2012). Sewage Sludge: An Important Biological Resource for Sustainable Agriculture and Its Environmental Implications. American Journal of Plant Sciences, 03(12), 1708–1721. https://doi.org/10.4236/ajps.2012.312209

Van der Hagen, T. R. (2012). The Application of Bio Jet Fuels until 2050: Scenarios for Future Developments. Master Thesis, Utrecht University, Utrecht, The Netherlands. https://dspace.library.uu.nl/bitstream/handle/1874/23708 5/Tim%20vd%20Hagen%20Thesis200312%20FINAL.pdf; sequence=1

Vaughan, D. A., & Morishima, H. (2003). Biosystematics of the genus Oryza. In Rice: Origin, History, Technology, and Production; Smith, C. W., Dilday, R. H., Eds.; John Wiley and Sons Inc.: Hoboken, NJ, pp 27-65.

Verma, P., Sharma, M. P., & Dwivedi, G. (2016). Potential use of eucalyptus biodiesel in compressed ignition engine. Egyptian Journal of Petroleum, 25(1), 91–95. https://doi.org/10.1016/j.ejpe.2015.03.008

Walter, A., Dolzan, P., Quilodrán, O., de Oliveira, J. G., da Silva, C., Piacente, F., & Segerstedt, A. (2011). Sustainability assessment of bio-ethanol production in Brazil considering land use change, GHG emissions and socio- economic aspects. Energy Policy, 39(10), 5703–5716. https://doi.org/10.1016/j.enpol.2010.07.043

Wang, W. C., & Tao, L. (2016). Bio-jet fuel conversion technologies. Renewable and Sustainable Energy Reviews, 53, 801–822. https://doi.org/10.1016/j.rser.2015.09.016

Williams, R. H., Larson, E. D., Katofsky, R. E., & Chen, J. (1995). Methanol and hydrogen from biomass for transportation. Energy for Sustainable Development, 1(5), 18–34. https://doi.org/10.1016/s0973-0826(08)60083-6

Wu, Dawei, Roskilly Anthony P. & Yu Hongdong. (2013). Croton megalocarpus oil-fired micro-trigeneration prototype for remote and self-contained applications: experimental assessment of its performance and gaseous and particulate emissions Interface Focus. https://doi.org/10.1098/rsfs.2012.0041

Wu, R., Beutler, J., & Baxter, L. L. (2020). Non-catalytic ash effect on char reactivity. Applied Energy, 260, 114358. https://doi.org/10.1016/j.apenergy.2019.114358

Youkhana, A. H., & Idol, T. W. (2015). Leucaena-KX2 mulch additions increase growth, yield and soil C and N in a managed full-sun coffee system in Hawaii. Agroforestry Systems, 90(2), 325–337. https://doi.org/10.1007/s10457- 015-9857-z

Zafar, S. (2005). Biomass Resources from Rice Industry. Bioenergy Consult. http://www.bioenergyconsult.com/biomass-resources-rice- industry

Zahan, K.A., & Kano, M. (2018). Biodiesel Production from Palm Oil, Its Byproducts, and Mill Effluent: A

Review. Energies. 11(8):2132. https://doi.org/10.3390/en11082132

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る