リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Pollination Contribution Differs among Insects Visiting Cardiocrinum cordatum Flowers」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Pollination Contribution Differs among Insects Visiting Cardiocrinum cordatum Flowers

Komamura Riko Koyama Kohei Yamauchi Takeo Konno Yasuo Gu Lingshuang 帯広畜産大学

2022.06.14

概要

(1) Background: Cardiocrinum cordatum (Thunb.) Makino (Liliaceae) is a forest perennial herb distributed in East Asia. Although flower visitors for this plant species have been well reported, their contribution to pollination remains unknown. (2) Methods: We evaluated pollination contribution for visitors of C. cordatum flowers in a natural cool temperate forest. We investigated visiting frequency, the number of pollen grains per body surface, fruit set, and the mean number of seeds per fruit produced after a single visit of each visiting species. Combining the results of these experiments, we determined the most important pollinators of this species. (3) Results: For the population investigated in the study, the three most essential pollinators were the bumblebee (Bombus diversus tersatus) (Apidae), sweat bee (Halictidae sp.), and marmalade hoverfly (Episyrphus balteatus) (Syrphidae). Additionally, we found that the contribution of a flower-visiting ant species (Myrmica ruginodis Nylander (s.l.)) (Formicidae) is small. (4) Conclusions: Pollinator contributions differed among flower visitors. Our results underscore the insufficiency of current information about flower-visiting species to evaluate pollination contribution.

参考文献

1.

2.

3.

4.

5.

Collevatti, R.G.; Estolano, R.; Garcia, S.F.; Hay, J.D. Seed abortion in the bat pollinated Neotropical tree species, Caryocar brasiliense

(Caryocaraceae). Botany 2009, 87, 1110–1115. [CrossRef]

Kunitake, Y.K.; Hasegawa, M.; Miyashita, T.; Higuchi, H. Role of a seasonally specialist bird Zosterops japonica on pollen transfer

and reproductive success of Camellia japonica in a temperate area. Plant Spec. Biol. 2004, 19, 197–201. [CrossRef]

Matsuki, Y.; Tateno, R.; Shibata, M.; Isagi, Y. Pollination efficiencies of flower-visiting insects as determined by direct genetic

analysis of pollen origin. Am. J. Bot. 2008, 95, 925–930. [CrossRef]

Nakamura, M.; Nanami, S.; Okuno, S.; Hirota, S.K.; Matsuo, A.; Suyama, Y.; Tokumoto, H.; Yoshihara, S.; Itoh, A. Genetic diversity

and structure of apomictic and sexually reproducing Lindera species (Lauraceae) in Japan. Forests 2021, 12, 227. [CrossRef]

Yoshida, Y.; Nikkeshi, A.; Chishiki, A. Identification of effective pollinators of Primula sieboldii E. Morren in a wild habitat in

Hiroshima, Japan. Plant Spec. Biol. 2020. [CrossRef]

Forests 2021, 12, 452

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

9 of 11

Nishizawa, M.; Ohara, M. The role of sexual and vegetative reproduction in the population maintenance of a monocarpic

perennial herb, Cardiocrinum cordatum var. glehnii. Plant Spec. Biol. 2018, 33, 289–304. [CrossRef]

Narumi, T.; Ohara, M. Variation in reproductive modes and population genetic structures of a monocarpic perennial herb,

Cardiocrinum cordatum, in relation to habitat fragmentation. Plant Spec. Biol. 2018, 33, 248–258. [CrossRef]

Al-Qthanin, R.N.; Alharbi, S.A. Spatial structure and genetic variation of a mangrove species (Avicennia marina (Forssk.) Vierh) in

the Farasan Archipelago. Forests 2020, 11, 1287. [CrossRef]

Lu, J.-T.; Qiu, Y.-H.; Lu, J.-B. Effects of landscape fragmentation on genetic diversity of male-biased dioecious plant Pistacia

chinensis bunge populations. Forests 2019, 10, 792. [CrossRef]

Collevatti, R.G.; Grattapaglia, D.; Hay, J.D. High resolution microsatellite based analysis of the mating system allows the detection

of significant biparental inbreeding in Caryocar brasiliense, an endangered tropical tree species. Heredity 2001, 86, 60–67. [CrossRef]

Geerts, S.; Coetzee, A.; Rebelo, A.G.; Pauw, A. Pollination structures plant and nectar-feeding bird communities in Cape fynbos,

South Africa: Implications for the conservation of plant–bird mutualisms. Ecol. Res. 2020, 35, 838–856. [CrossRef]

Herrera, C.M. Components of pollinator “quality”: Comparative analysis of a diverse insect assemblage. Oikos 1987, 50, 79–90.

[CrossRef]

Herrera, C.M. Pollinator abundance, morphology, and flower visitation rate: Analysis of the “quantity” component in a plantpollinator system. Oecologia 1989, 80, 241–248. [CrossRef] [PubMed]

Schupp, E.W.; Jordano, P.; Gómez, J.M. A general framework for effectiveness concepts in mutualisms. Ecol. Lett. 2017, 20,

577–590. [CrossRef] [PubMed]

Conceição, S.I.R.; Fernandes, J.; Borges da Silva, E.; Caperta, A.D. Reproductive output and insect behavior in hybrids and

apomicts from Limonium ovalifolium and L. binervosum complexes (Plumbaginaceae) in an open cross-pollination experiment.

Plants 2021, 10, 169. [CrossRef]

Tokumoto, Y.; Matsushita, M.; Kishimoto-Yamada, K.; Nikkeshi, A.; Isogimi, T.; Nakagawa, M. Floral visitors and reproductive

success in two sequentially flowering Lindera shrubs (Lauraceae) of central Japan. J. For. Res. 2019, 24, 42–51. [CrossRef]

Yamasaki, E.; Sakai, S. Wind and insect pollination (ambophily) of Mallotus spp. (Euphorbiaceae) in tropical and temperate

forests. Aust. J. Bot. 2013, 61, 60–66. [CrossRef]

Giblin, D.E. Variation in floral longevity between populations of Campanula rotundifolia (Campanulaceae) in response to fitness

accrual rate manipulation. Am. J. Bot. 2005, 92, 1714–1722. [CrossRef]

Soley, N.M.; Sipes, S.D. Reproductive biology and pollinators of the invasive shrub Autumn olive (Elaeagnus umbellata Thunberg).

Plant Spec. Biol. 2020. [CrossRef]

Hou, S.; Zhao, T.; Yang, D.; Li, Q.; Liang, L.; Wang, G.; Ma, Q. Selection and validation of reference genes for quantitative RT-PCR

analysis in Corylus heterophylla Fisch. × Corylus avellana L. Plants 2021, 10, 159. [CrossRef]

Bentrup, G.; Hopwood, J.; Adamson, N.L.; Vaughan, M. Temperate agroforestry systems and insect pollinators: A review. Forests

2019, 10, 981. [CrossRef]

Tran, X.T.; Parks, S.E.; Nguyen, M.H.; Roach, P.D. Reduced pollination efficiency compromises some physicochemical qualities in

gac (Momordica cochinchinensis Spreng.) fruit. Agronomy 2021, 11, 190. [CrossRef]

Fernández, F.J.; Garay, J.; Móri, T.F.; Csiszár, V.; Varga, Z.; López, I.; Gámez, M.; Cabello, T. Theoretical foundation of the control

of pollination by hoverflies in a greenhouse. Agronomy 2021, 11, 167. [CrossRef]

Aizen, M.A.; Aguiar, S.; Biesmeijer, J.C.; Garibaldi, L.A.; Inouye, D.W.; Jung, C.; Martins, D.J.; Medel, R.; Morales, C.L.; Ngo,

H.; et al. Global agricultural productivity is threatened by increasing pollinator dependence without a parallel increase in crop

diversification. Glob. Chang. Biol. 2019, 25, 3516–3527. [CrossRef] [PubMed]

Cusser, S.; Neff, J.L.; Jha, S. Natural land cover drives pollinator abundance and richness, leading to reductions in pollen limitation

in cotton agroecosystems. Agr. Ecosyst. Environ. 2016, 226, 33–42. [CrossRef]

McGrady, C.M.; Troyer, R.; Fleischer, S.J. Wild bee visitation rates exceed pollination thresholds in commercial Cucurbita

agroecosystems. J. Econ. Entomol. 2020, 113, 562–574. [CrossRef]

Pfister, S.C.; Eckerter, P.W.; Schirmel, J.; Cresswell, J.E.; Entling, M.H. Sensitivity of commercial pumpkin yield to potential decline

among different groups of pollinating bees. R. Soc. Open Sci. 2017, 4, 170102. [CrossRef] [PubMed]

Senapathi, D.; Fründ, J.; Albrecht, M.; Garratt, M.P.D.; Kleijn, D.; Pickles, B.J.; Potts, S.G.; An, J.; Andersson, G.K.S.; Bänsch, S.;

et al. Wild insect diversity increases inter-annual stability in global crop pollinator communities. Proc. R. Soc. B Biol. Sci. 2021,

288, 20210212. [CrossRef]

Nikkeshi, A.; Inoue, H.; Arai, T.; Kishi, S.; Kamo, T. The bumblebee Bombus ardens ardens (Hymenoptera: Apidae) is the most

important pollinator of Oriental persimmon, Diospyros kaki (Ericales: Ebenaceae), in Hiroshima, Japan. Appl. Entomol. Zool. 2019,

54, 409–419. [CrossRef]

Hargreaves, A.L.; Harder, L.D.; Johnson, S.D. Consumptive emasculation: The ecological and evolutionary consequences of

pollen theft. Biol. Rev. 2009, 84, 259–276. [CrossRef] [PubMed]

Irwin, R.E.; Bronstein, J.L.; Manson, J.S.; Richardson, L. Nectar robbing: Ecological and evolutionary perspectives. Annu. Rev.

Ecol. Evol. Syst. 2010, 41, 271–292. [CrossRef]

Ohara, M.; Narumi, T.; Yoshizane, T.; Okayasu, T.; Masuda, J.; Kawano, S. 7: Cardiocrinum cordatum (Thunb.) Makino (Liliaceae).

Plant Spec. Biol. 2006, 21, 201–207. [CrossRef]

Forests 2021, 12, 452

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

10 of 11

Nagamitsu, T.; Tsukuba, S.-A.; Ushirokita, F.; Konno, Y. Foraging habitats and floral resource use by colonies of long- and

short-tongued bumble bee species in an agricultural landscape with kabocha squash fields. Appl. Entomol. Zool. 2012, 47, 181–190.

[CrossRef]

Konno, Y. Present status of remnant forests in Obihro, eastern Hokkaido, Japan. In Global Perspective in Forest Conservation and

Sustainable Agriculture; Obihiro Asia and the Pacific Seminar on Education for Rural Development (OASERD): Obihiro, Japan,

2002; pp. 39–46.

Matsumura, C.; Yokoyama, J.; Washitani, I. Invasion status and potential ecological impacts of an invasive alien bumblebee,

Bombus terrestris L. (Hymenoptera: Apidae) naturalized in Southern Hokkaido, Japan. Glob. Environ. Res. 2004, 8, 51–66.

Cao, G.-X.; Kudo, G. Size-dependent sex allocation in a monocarpic perennial herb, Cardiocrinum cordatum (Liliaceae). Plant Ecol.

2008, 194, 99–107. [CrossRef]

Lu, R.-S.; Chen, Y.; Tamaki, I.; Sakaguchi, S.; Ding, Y.-Q.; Takahashi, D.; Li, P.; Isagi, Y.; Chen, J.; Qiu, Y.-X. Pre-quaternary

diversification and glacial demographic expansions of Cardiocrinum (Liliaceae) in temperate forest biomes of Sino-Japanese

Floristic Region. Mol. Phylogenet. Evol. 2020, 143, 106693. [CrossRef]

Lu, R.-S.; Li, P.; Qiu, Y.-X. The complete chloroplast genomes of three Cardiocrinum (Liliaceae) species: Comparative genomic and

phylogenetic analyses. Front. Plant Sci. 2017, 7, 2054. [CrossRef]

Cao, G.X.; Worley, A.C. Life history trade-offs and evidence for hierarchical resource allocation in two monocarpic perennials.

Plant Biol. 2013, 15, 158–165. [CrossRef]

Koyama, K.; Hidaka, Y.; Ushio, M. Dynamic scaling in the growth of a non-branching plant, Cardiocrinum cordatum. PLoS ONE

2012, 7, e45317. [CrossRef]

Araki, K.; Shimatani, K.; Nishizawa, M.; Yoshizane, T.; Ohara, M. Growth and survival patterns of Cardiocrinum cordatum var.

glehnii (Liliaceae) based on a 13-year monitoring study: Life history characteristics of a monocarpic perennial herb. Botany 2010,

88, 745–752. [CrossRef]

Kondo, T.; Sato, C.; Baskin, J.M.; Baskin, C.C. Post-dispersal embryo development, germination phenology, and seed dormancy

in Cardiocrinum cordatum var. glehnii (Liliaceae s. str.), a perennial herb of the broadleaved deciduous forest in Japan. Am. J.

Bot. 2006, 93, 849–859. [CrossRef] [PubMed]

Hayafune, T.; Utech, F.H.; Ohara, M. Inter-populational variation, but no-annual variation within populations, in terms of

reproductive size and genetic structure in a monocarpic perennial herb, Cardiocrinum cordatum var. glehnii. Plant Spec. Biol. 2019,

34, 27–30. [CrossRef]

Hori, K.; Watanabe, T.; Devkota, H.P. Phenolic acid derivatives, flavonoids and other bioactive compounds from the leaves of

Cardiocrinum cordatum (Thunb.) Makino (Liliaceae). Plants 2021, 10, 320. [CrossRef] [PubMed]

Nishiumi, S.; Hosokawa, K.; Anetai, M.; Shibata, T.; Mukai, R.; Yoshida, K.-i.; Ashida, H. Antagonistic effect of the ainu-selected

traditional beneficial plants on the transformation of an aryl hydrocarbon receptor. J. Food Sci. 2012, 77, C420–C429. [CrossRef]

Japan Meteorological Agency. Available online: http://www.jma.go.jp (accessed on 14 September 2020).

Iwabe, R.; Koyama, K.; Komamura, R. Shade avoidance and light foraging of a clonal woody species, Pachysandra terminalis.

Plants. under review.

Takenaka, A. CanopOn 2 ver. 2.03c. 2009. Available online: http://takenaka-akio.org/etc/canopon2/index.html (accessed on

26 September 2020).

Parker, A.J.; Tran, J.L.; Ison, J.L.; Bai, J.D.K.; Weis, A.E.; Thomson, J.D. Pollen packing affects the function of pollen on corbiculate

bees but not non-corbiculate bees. Arthropod-Plant Int. 2015, 9, 197–203. [CrossRef]

Sakai, S. Handbook of Methods in Ecological Research 2: Field Methods in Pollination Ecology; Kyritsu Publishing: Tokyo, Japan, 2015.

(In Japanese)

Sutherland, S.D. Why hermaphroditic plants produce many more flowers than fruits: Experimental tests with Agave mckelveyana.

Evolution 1987, 41, 750–759. [CrossRef]

Koyama, K.; Tashiro, M. No effect of selective maturation on fruit traits for a bird-dispersed species, Sambucus racemosa. Plants

2021, 10, 376. [CrossRef]

R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna,

Austria, 2021.

Kobayashi, S.; Inoue, K.; Kato, M. Evidence of pollen transfer efficiency as the natural selection factor favoring a large corolla of

Campanula punctata pollinated by Bombus diversus. Oecologia 1997, 111, 535–542. [CrossRef]

Katayama, E. Studies on the development of the broods of Bombus diversus Smith (Hymenoptera, Apidae): II. Brood development

and feeding habits. Kontyu 1966, 34, 8–17.

Darvill, B.; Knight, M.E.; Goulson, D. Use of genetic markers to quantify bumblebee foraging range and nest density. Oikos 2004,

107, 471–478. [CrossRef]

van Rijn, P.C.J.; Wäckers, F.L. Nectar accessibility determines fitness, flower choice and abundance of hoverflies that provide

natural pest control. J. Appl. Ecol. 2016, 53, 925–933. [CrossRef]

Inouye, D.W. The effect of proboscis and corolla tube lengths on patterns and rates of flower visitation by bumblebees. Oecologia

1980, 45, 197–201. [CrossRef]

Inoue, M.N.; Yokoyama, J. Competition for flower resources and nest sites between Bombus terrestris (L.) and Japanese native

bumblebees. Appl. Entomol. Zool. 2010, 45, 29–35. [CrossRef]

Forests 2021, 12, 452

60.

61.

62.

63.

64.

65.

11 of 11

Inoue, T.; Kato, M. Hana ni Hikiyose Rareru Dobutsu—Hana to Doubutsu no Kyoshinka; Heibonsya: Tokyo, Japan, 1993. (In Japanese)

van Rijn, P.C.J.; Kooijman, J.; Wäckers, F.L. The contribution of floral resources and honeydew to the performance of predatory

hoverflies (Diptera: Syrphidae). Biol. Control 2013, 67, 32–38. [CrossRef]

Rostás, M.; Bollmann, F.; Saville, D.; Riedel, M. Ants contribute to pollination but not to reproduction in a rare calcareous

grassland forb. PeerJ 2018, 6, e4369. [CrossRef]

Rostás, M.; Tautz, J. Ants as pollinators of plants and the role of floral scents. In All Flesh Is Grass: Plant-Animal Interrelationships;

Dubinsky, Z., Seckbach, J., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 149–161. [CrossRef]

de Vega, C.; Herrera, C.M.; Dötterl, S. Floral volatiles play a key role in specialized ant pollination. Perspect. Plant Ecol. Evol. Syst.

2014, 16, 32–42. [CrossRef]

Collevatti, R.G.; Amara, M.E.C.; Lopes, F.S. Role of pollinators in seed set and a test of pollen limitation hypothesis in the tropical

weed Triumfetta semitriloba (Tiliaceae). Rev. Biol. Trop. 1997, 45, 1401–1407.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る