リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Shade Avoidance and Light Foraging of a Clonal Woody Species, Pachysandra terminalis」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Shade Avoidance and Light Foraging of a Clonal Woody Species, Pachysandra terminalis

Iwabe Risa Koyama Kohei Komamura Riko 帯広畜産大学

2022.06.13

概要

(1) Background: A central subject in clonal plant ecology is to elucidate the mechanism by which clones forage resources in heterogeneous environments. Compared with studies conducted in laboratories or experimental gardens, studies on light foraging of forest woody clonal plants in their natural habitats are limited. (2) Methods: We investigated wild populations of an evergreen clonal understory shrub, Japanese pachysandra (Pachysandra terminalis Siebold & Zucc.), in two cool-temperate forests in Japan. (3) Results: Similar to the results of erbaceous clonal species, this species formed a dense stand in a relatively well-lit place, and a sparse stand in a shaded place. Higher specific rhizome length (i.e., length per unit mass) in shade resulted in lower ramet population density in shade. The individual leaf area, whole-ramet leaf area, or ramet height did not increase with increased light availability. The number of flower buds per flowering ramet increased as the
canopy openness or population density increased. (4) Conclusions: Our results provide the first empirical evidence of shade avoidance and light foraging with morphological plasticity for a clonal woody species.

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Abrahamson, W.G. Reproductive strategies in dewberries. Ecology 1975, 56, 721–726. [CrossRef]

Alpert, P.; Stuefer, J.F. Division of labour in clonal plants. In The Ecology and Evolution of Clonal Plants; de Kroon, H.,

van Groenendael, J., Eds.; Backhuys: Leiden, Netherlands, 1997; pp. 137–154.

Radosavljevi´c, I.; Antoni´c, O.; Hruševar, D.; Križan, J.; Satovic, Z.; Turkovi´c, D.; Liber, Z. The influence of a seedling recruitment

strategy and a clonal architecture on a spatial genetic structure of a Salvia brachyodon (Lamiaceae) population. Plants 2020, 9, 828.

[CrossRef] [PubMed]

De Kroon, H.; Huber, H.; Stuefer, J.F.; Van Groenendael, J.M. A modular concept of phenotypic plasticity in plants. New Phytol.

2005, 166, 73–82. [CrossRef] [PubMed]

Guo, J.; Li, H.; Yang, Y. Physiological integration increases sexual reproductive performance of the rhizomatous grass Hierochloe

glabra. Plants 2020, 9, 1608. [CrossRef]

Vallejo-Marín, M.; Dorken, M.E.; Barrett, S.C.H. The ecological and evolutionary consequences of clonality for plant mating.

Annu. Rev. Ecol. Evol. Syst. 2010, 41, 193–213. [CrossRef]

Slade, A.J.; Hutchings, M.J. The effects of light intensity on foraging in the clonal herb Glechoma hederacea. J. Ecol. 1987, 75, 639–650.

[CrossRef]

Slade, A.J.; Hutchings, M.J. The effects of nutrient availability on foraging in the clonal herb Glechoma hederacea. J. Ecol. 1987, 75, 95–112.

[CrossRef]

Evans, J.P.; Cain, M.L. A spatially explicit test of foraging behavior in a clonal plant. Ecology 1995, 76, 1147–1155. [CrossRef]

Dong, M. Morphological responses to local light conditions in clonal herbs from contrasting habitats, and their modification due

to physiological integration. Oecologia 1995, 101, 282–288. [CrossRef]

Roiloa, S.R.; Retuerto, R. Small-scale heterogeneity in soil quality influences photosynthetic efficiency and habitat selection in a

clonal plant. Ann. Bot. 2006, 98, 1043–1052. [CrossRef]

Xie, K.; Zhao, X.; Zhang, Y.; Dong, K.; Fenghe, L.; LI, X. Growth characteristics of Potentilla anserina determined by analyzing

small-scale patchy habitats. Pak. J. Bot. 2015, 47, 967–978.

Tomimatsu, H.; Matsuo, A.; Kaneko, Y.; Kudo, E.; Taniguchi, R.; Saitoh, T.; Suyama, Y.; Makita, A. Spatial genet dynamics of a

dwarf bamboo: Clonal expansion into shaded forest understory contributes to regeneration after an episodic die-off. Plant Spec.

Biol. 2020, 35, 185–196. [CrossRef]

Wang, J.; Xu, T.; Wang, Y.; Li, G.; Abdullah, I.; Zhong, Z.; Liu, J.; Zhu, W.; Wang, L.; Wang, D.; et al. A meta-analysis of effects of

physiological integration in clonal plants under homogeneous vs. heterogeneous environments. Funct. Ecol. 2021, 35, 578–589.

[CrossRef]

Jing, X.; Cai, C.; Fan, S.; Liu, G.; Wu, C.; Chen, B. Effects of rhizome integration on the water physiology of Phyllostachys edulis

clones under heterogeneous water stress. Plants 2020, 9, 373. [CrossRef] [PubMed]

Eilts, J.A.; Mittelbach, G.G.; Reynolds, H.L.; Gross, K.L. Resource heterogeneity, soil fertility, and species diversity: Effects of

clonal species on plant communities. Am. Nat. 2011, 177, 574–588. [CrossRef]

Portela, R.; Barreiro, R.; Roiloa, S.R. Biomass partitioning in response to resources availability: A comparison between native and

invaded ranges in the clonal invader Carpobrotus edulis. Plant Spec. Biol. 2019, 34, 11–18. [CrossRef]

Martin, F.-M. Clonal growth strategies of Reynoutria japonica in response to light, shade, and mowing, and perspectives for

management. NeoBiota 2020, 56, 89–110. [CrossRef]

Roiloa, S.R.; Rodriguez-Echeverria, S.; Lopez-Otero, A.; Retuerto, R.; Freitas, H. Adaptive plasticity to heterogeneous environments increases capacity for division of labor in the clonal invader Carpobrotus edulis (Aizoaceae). Am. J. Bot. 2014, 101, 1301–1308.

[CrossRef]

Cole, P.G.; Weltzin, J.F. Light limitation creates patchy distribution of an invasive grass in eastern deciduous forests. Biol Invasions

2005, 7, 477–488. [CrossRef]

Klimešová, J.; Martínková, J.; Herben, T. Horizontal growth: An overlooked dimension in plant trait space. Perspect. Plant Ecol.

Evol. Syst. 2018, 32, 18–21. [CrossRef]

Ning, Y.; Zhang, Z.X.; Cui, L.J.; Zou, C.L. Adaptive significance of and factors affecting plasticity of biomass allocation and

rhizome morphology: A case study of the clonal plant Scirpus planiculmis (Cyperaceae). Pol. J. Ecol. 2014, 62, 77–88. [CrossRef]

Ruiz-Reynés, D.; Martín, L.; Hernández-García, E.; Knobloch, E.; Gomila, D. Patterns, localized structures and fronts in a reduced

model of clonal plant growth. Physica D 2020, 414, 132723. [CrossRef]

Van Kleunen, M.; Fischer, M.; Schmid, B. Effects of intraspecific competition on size variation and reproductive allocation in a

clonal plant. Oikos 2001, 94, 515–524. [CrossRef]

Bakacsy, L.; Bagi, I. Survival and regeneration ability of clonal common milkweed (Asclepias syriaca L.) after a single herbicide

treatment in natural open sand grasslands. Sci. Rep. 2020, 10, 14222. [CrossRef] [PubMed]

Wang, Y.-J.; Chen, D.; Yan, R.; Yu, F.-H.; van Kleunen, M. Invasive alien clonal plants are competitively superior over co-occurring

native clonal plants. Perspect. Plant Ecol. Evol. Syst. 2019, 40, 125484. [CrossRef]

O’Connor, R.C.; Taylor, J.H.; Nippert, J.B. Browsing and fire decreases dominance of a resprouting shrub in woody encroached

grassland. Ecology 2020, 101, e02935. [CrossRef] [PubMed]

Keser, L.H.; Dawson, W.; Song, Y.B.; Yu, F.H.; Fischer, M.; Dong, M.; van Kleunen, M. Invasive clonal plant species have a greater

root-foraging plasticity than non-invasive ones. Oecologia 2014, 174, 1055–1064. [CrossRef] [PubMed]

Plants 2021, 10, 809

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

10 of 12

Zheng, Y.; Jiao, P.; Zhao, Z.; Li, Z. Clonal growth of Populus pruinosa Schrenk and its role in the regeneration of riparian forests.

Ecol. Eng. 2016, 94, 380–392. [CrossRef]

Colleran, B.; Lacy, S.N.; Retamal, M.R. Invasive Japanese knotweed (Reynoutria japonica Houtt.) and related knotweeds as catalysts

for streambank erosion. River Res. Appl. 2020, 36, 1962–1969. [CrossRef]

Martin, F.-M.; Dommanget, F.; Evette, A. Improving the management of Japanese knotweed s.l.: A response to Jones and

colleagues. NeoBiota 2020, 63, 147–153. [CrossRef]

Deguchi, R.; Koyama, K. Photosynthetic and morphological acclimation to high and low light environments in Petasites japonicus

subsp. giganteus. Forests 2020, 11, 1365. [CrossRef]

Chazdon, R.L. Sunflecks and their importance to forest understorey plants. In Advances in Ecological Research; Begon, M., Fitter,

A.H., Ford, E.D., Macfadyen, A., Eds.; Academic Press: London, UK, 1988; Volume 18, pp. 1–63.

Morales, A.; Kaiser, E. Photosynthetic acclimation to fluctuating irradiance in plants. Front. Plant Sci. 2020, 11, 268. [CrossRef]

Parker, G.G.; Fitzjarrald, D.R.; Gonçalves Sampaio, I.C. Consequences of environmental heterogeneity for the photosynthetic

light environment of a tropical forest. Agr. Forest Meteorol. 2019, 278, 107661. [CrossRef]

Hartikainen, S.M.; Pieristè, M.; Lassila, J.; Robson, T.M. Seasonal patterns in spectral irradiance and leaf UV-A absorbance under

forest canopies. Front. Plant Sci. 2020, 10. [CrossRef]

Miyashita, A.; Sugiura, D.; Sawakami, K.; Ichihashi, R.; Tani, T.; Tateno, M. Long-term, short-interval measurements of the

frequency distributions of the photosynthetically active photon flux density and net assimilation rate of leaves in a cool-temperate

forest. Agr. For. Meteorol. 2012, 152, 1–10. [CrossRef]

Huber, H.; Wiggerman, L. Shade avoidance in the clonal herb Trifolium fragiferum: A field study with experimentally manipulated

vegetation height. Plant Ecol. 1997, 130, 53–62. [CrossRef]

Min, B.-M. Changes in resource allocation among vegetative organs during the clonal growth of Polygonatum humile (Liliaceae)

grown in a temperate forest gap. J. Ecol. Environ. 2017, 41, 30. [CrossRef]

Birch, C.P.D.; Hutchings, M.J. Exploitation of patchily distributed soil resources by the clonal herb Glechoma hederacea. J. Ecol.

1994, 82, 653–664. [CrossRef]

Waite, S. Field evidence of plastic growth responses to habitat heterogeneity in the clonal herb Ranunculus repens. Ecol. Res.

1994, 9, 311–316. [CrossRef]

Huber, H.; Fijan, A.; During, H.J. A comparative study of spacer plasticity in erect and stoloniferous herbs. Oikos 1998, 81, 576–586.

[CrossRef]

Takenaka, A. Effects of leaf blade narrowness and petiole length on the light capture efficiency of a shoot. Ecol. Res. 1994, 9, 109–114.

[CrossRef]

Huber, H.; de Brouwer, J.; de Caluwe, H.; Wijschede, J.; Anten, N.P.R. Shade induced changes in biomechanical petiole properties

in the stoloniferous herb Trifolium repens. Evol. Ecol. 2008, 22, 399–417. [CrossRef]

Huber, H.; Stuefer, J.F. Shade-induced changes in the branching pattern of a stoloniferous herb: Functional response or allometric

effect? Oecologia 1997, 110, 478–486. [CrossRef]

Huber, H. Plasticity of internodes and petioles in postrate and erect Potentilla species. Funct. Ecol. 1996, 10, 401–409. [CrossRef]

Wijesinghe, D.K.; Hutchings, M.J. Consequences of patchy distribution of light for the growth of the clonal herb Glechoma hederacea.

Oikos 1996, 77, 137–145. [CrossRef]

Poorter, H.; Fiorani, F.; Pieruschka, R.; Wojciechowski, T.; van der Putten, W.H.; Kleyer, M.; Schurr, U.; Postma, J. Pampered

inside, pestered outside? Differences and similarities between plants growing in controlled conditions and in the field. New

Phytol. 2016, 212, 838–855. [CrossRef] [PubMed]

Tammaru, K.; Košnar, J.; Abbas, A.F.; Barta, K.A.; de Bello, F.; Harrison, S.; Degli, E.I.; Kiss, R.; Lukács, K.; Neumann, S.M.; et al.

Ecological differentiation of Carex species coexisting in a wet meadow: Comparison of pot and field experiments. Acta Oecol.

2021, 110, 103692. [CrossRef]

Kitajima, K. Relative importance of photosynthetic traits and allocation patterns as correlates of seedling shade tolerance of 13

tropical trees. Oecologia 1994, 98, 419–428. [CrossRef]

Onoda, Y.; Schieving, F.; Anten, N.P. Effects of light and nutrient availability on leaf mechanical properties of Plantago major:

A conceptual approach. Ann. Bot. 2008, 101, 727–736. [CrossRef]

Wan, Y.; Zhang, Y.; Zhang, M.; Hong, A.; Yang, H.; Liu, Y. Shade effects on growth, photosynthesis and chlorophyll fluorescence

parameters of three Paeonia species. PeerJ 2020, 8, e9316. [CrossRef]

Jeong, H.H.; Kim, K.S. Effects of shading on the growth of Hedera rhombea Bean and Pachysandra terminalis Sieb. et Zucc. Korea J.

Hort. Sci. Tech. 1999, 17, 29–32.

Lee, J.S.; Jeong, S.J.; Heo, J.A.; Kang, H.J.; Hwang, S.Y.; Kim, Y.-K. Light intensity levels and growth inhibitors on growth of shade

tolerant Japanese spurge (Pachysandra terminalis). J. Korea Soc. Hort. Sci. 2002, 43, 137–142.

Lovett Doust, J.; Lovett Doust, L. Modules of production and reproduction in a dioecious clonal shrub, Rhus typhina. Ecology

1988, 69, 741–750. [CrossRef]

Yakimowski, S.B.; Eckert, C.G. Threatened peripheral populations in context: Geographical variation in population frequency

and size and sexual reproduction in a clonal woody shrub. Conserv. Biol. 2007, 21, 811–822. [CrossRef] [PubMed]

Würth, D.G.; Eusemann, P.; Trouillier, M.; Buras, A.; Burger, A.; Wilmking, M.; Roland, C.A.; Juday, G.P.; Schnittler, M. Environment

drives spatiotemporal patterns of clonality in white spruce (Picea glauca) in Alaska. Can. J. For. Res. 2018, 48, 1577–1586. [CrossRef]

Plants 2021, 10, 809

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

11 of 12

Isogimi, T.; Matsushita, M.; Nakagawa, M. Species-specific sprouting pattern in two dioecious Lindera shrubs: The role of

physiological integration. Flora 2014, 209, 718–724. [CrossRef]

Hosaka, N.; Kachi, N.; Kudoh, H.; Stuefer, J.F.; Whigham, D.F. Compensatory growth of the clonal understory tree, Asimina

triloba, in response to small-scale disturbances. Plant Ecol. 2016, 217, 471–480. [CrossRef]

Kimura, M.K.; Nagashima, T.; Kamitani, T.; Sakio, H.; Tsumura, Y. Recent clonal reproduction of Cryptomeria japonica in a snowy

region revealed by a survey of small-sized ramets. Silv. Gen. 2020, 69, 152–157. [CrossRef]

Yaegashi, S.; Omura, T.; Watanabe, K. Spatial genetic structure of the invasive tree Robinia pseudoacacia to determine migration

patterns to inform best practices for riparian restoration. AoB Plants 2020, 12, plaa043. [CrossRef]

Nakamura, M.; Nanami, S.; Okuno, S.; Hirota, S.K.; Matsuo, A.; Suyama, Y.; Tokumoto, H.; Yoshihara, S.; Itoh, A. Genetic diversity

and structure of apomictic and sexually reproducing Lindera species (Lauraceae) in Japan. Forests 2021, 12, 227. [CrossRef]

Ohashi, H.; Kadota, Y.; Murata, J.; Yonekura, K.; Kihara, H. Wild flowers of Japan; Heibonsha: Tokyo, Japan, 2015.

Ishioka, R.; Muller, O.; Hiura, T.; Kudo, G. Responses of leafing phenology and photosynthesis to soil warming in forest-floor

plants. Acta Oecologica 2013, 51, 34–41. [CrossRef]

Yoshie, F.; Arai, H.; Nakashima, H.; Kawano, S. Seasonal changes in nitrogen fractions of Pachysandra terminalis, a forest evergreen

chamaephyte. Physiol. Plant. 1990, 79, 7–14. [CrossRef]

Zhou, S.; Sauvé, R.J.; Mmbaga, M.T. Adaptation of Pachysandra terminalis Sieb. & Zucc. to freezing temperatures by the

accumulation of mRNA and cold-induced proteins. HortScience 2005, 40, 346. [CrossRef]

Jiao, Z.; Li, J. Phylogenetics and biogeography of eastern Asian–North American disjunct genus Pachysandra (Buxaceae) inferred

from nucleotide sequences. J. Syst. Evol. 2009, 47, 191–201. [CrossRef]

Jeong, M.I.; Jeong, N.R.; Han, S.W.; Kim, J.S. Analyzing growth reactions of herbaceous plants for irrigation management. J. People

Plants Environ. 2020, 23, 255–265. [CrossRef]

Ntawuhiganayo, E.B.; Uwizeye, F.K.; Zibera, E.; Dusenge, M.E.; Ziegler, C.; Ntirugulirwa, B.; Nsabimana, D.; Wallin, G.;

Uddling, J. Traits controlling shade tolerance in tropical montane trees. Tree Physiol. 2020, 40, 183–197. [CrossRef]

Dos Santos, V.A.H.F.; Ferreira, M.J. Are photosynthetic leaf traits related to the first-year growth of tropical tree seedlings?

A light-induced plasticity test in a secondary forest enrichment planting. For. Ecol. Manage. 2020, 460, 117900. [CrossRef]

Poorter, H.; Niinemets, U.; Ntagkas, N.; Siebenkas, A.; Maenpaa, M.; Matsubara, S.; Pons, T. A meta-analysis of plant responses to

light intensity for 70 traits ranging from molecules to whole plant performance. New Phytol. 2019, 223, 1073–1105. [CrossRef]

[PubMed]

Miyashita, A.; Tateno, M. A novel index of leaf RGR predicts tree shade tolerance. Funct. Ecol. 2014, 28, 1321–1329. [CrossRef]

Pons, T.L.; Poorter, H. The effect of irradiance on the carbon balance and tissue characteristics of five herbaceous species differing

in shade-tolerance. Front. Plant Sci. 2014, 5, 12. [CrossRef] [PubMed]

Niinemets, U.; Portsmuth, A.; Tena, D.; Tobias, M.; Matesanz, S.; Valladares, F. Do we underestimate the importance of leaf size in

plant economics? Disproportional scaling of support costs within the spectrum of leaf physiognomy. Ann. Bot. 2007, 100, 283–303.

[CrossRef]

Niinemets, Ü.; Portsmuth, A.; Tobias, M. Leaf size modifies support biomass distribution among stems, petioles and mid-ribs in

temperate plants. New Phytol. 2006, 171, 91–104. [CrossRef]

Schmid, B.; Harper, J.L. Clonal growth in grassland perennials: I. Density and pattern-dependent competition between plants

with different growth forms. J. Ecol. 1985, 73, 793–808. [CrossRef]

Doust, L.L. Population dynamics and local specialization in a clonal perennial (Ranunculus repens): I. The dynamics of ramets in

contrasting habitats. J. Ecol. 1981, 69, 743–755. [CrossRef]

Komamura, R.; Koyama, K.; Yamauchi, T.; Konno, Y.; Gu, L. Pollination contribution differs among insects visiting Cardiocrinum

cordatum flowers. Forests 2021, 12, 452. [CrossRef]

Rostás, M.; Bollmann, F.; Saville, D.; Riedel, M. Ants contribute to pollination but not to reproduction in a rare calcareous

grassland forb. PeerJ 2018, 6, e4369. [CrossRef] [PubMed]

Al-Qthanin, R.N.; Alharbi, S.A. Spatial structure and genetic variation of a mangrove species (Avicennia marina (Forssk.) Vierh) in

the Farasan Archipelago. Forests 2020, 11. [CrossRef]

Japan Meteorological Agency. Available online: https://www.jma.go.jp (accessed on 14 September 2020).

Anderson, M.C. Studies of the woodland light climate: I. The photographic computation of light conditions. J. Ecol. 1964, 52, 27–41.

[CrossRef]

Takenaka, A. CanopOn 2 ver. 2.03c. Available online: http://takenaka-akio.org/etc/canopon2/ (accessed on 26 September 2020).

Takenaka, A.; Inui, Y.; Osawa, A. Measurement of three-dimensional structure of plants with a simple device and estimation of

light capture of individual leaves. Funct. Ecol. 1998, 12, 159–165. [CrossRef]

Yoshie, F.; Kawano, S. Seasonal changes in photosynthetic characteristics of Pachysandra terminalis (Buxaceae), an evergreen

woodland chamaephyte, in the cool temperate regions of Japan. Oecologia 1986, 71, 6–11. [CrossRef]

Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671.

[CrossRef]

R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021.

Wilke, C.O. Cowplot: Streamlined Plot Theme and Plot Annotations for ‘ggplot2’. CRAN Repos 2016, 2, R2.

Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer International Publishing: Cham, Switzerland, 2016.

Plants 2021, 10, 809

90.

91.

92.

93.

94.

95.

96.

12 of 12

Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 48. [CrossRef]

Alcántara, J.M.; Rey, P.J. Conflicting selection pressures on seed size: Evolutionary ecology of fruit size in a bird-dispersed tree,

Olea europaea. J. Evol. Biol. 2003, 16, 1168–1176. [CrossRef] [PubMed]

Koyama, K.; Shirakawa, H.; Kikuzawa, K. Redeployment of shoots into better-lit positions within the crowns of saplings of five

species with different growth patterns. Forests 2020, 11, 1301. [CrossRef]

Staab, M.; Pereira-Peixoto, M.H.; Klein, A.-M. Exotic garden plants partly substitute for native plants as resources for pollinators

when native plants become seasonally scarce. Oecologia 2020, 194, 465–480. [CrossRef]

Koyama, K.; Tashiro, M. No effect of selective maturation on fruit traits for a bird-dispersed species, Sambucus racemosa. Plants

2021, 10, 376. [CrossRef] [PubMed]

Case, S.B.; Tarwater, C.E. Functional traits of avian frugivores have shifted following species extinction and introduction in the

Hawaiian Islands. Funct. Ecol. 2020, 34, 2467–2476. [CrossRef]

Barr, D.J.; Levy, R.; Scheepers, C.; Tily, H.J. Random effects structure for confirmatory hypothesis testing: Keep it maximal. J. Mem.

Lang. 2013, 68, 255–278. [CrossRef] [PubMed]

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る