リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Preparation of Microfiltration Hollow Fiber Membranes from Cellulose Triacetate by Thermally Induced Phase Separation」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Preparation of Microfiltration Hollow Fiber Membranes from Cellulose Triacetate by Thermally Induced Phase Separation

Takao, Shota Rajabzadeh, Saeid Otsubo, Chihiro Hamada, Toyozo Kato, Noriaki Nakagawa, Keizo Shintani, Takuji Matsuyama, Hideto Yoshioka, Tomohisa 神戸大学

2022.09.27

概要

For the first time, self-standing microfiltration (MF) hollow fiber membranes were prepared from cellulose triacetate (CTA) via the thermally induced phase separation (TIPS) method. The resultant membranes were compared with counterparts prepared from cellulose diacetate (CDA) and cellulose acetate propionate (CAP). Extensive solvent screening by considering the Hansen solubility parameters of the polymer and solvent, the polymer's solubility at high temperature, solidification of the polymer solution at low temperature, viscosity, and processability of the polymeric solution, is the most challenging issue for cellulose membrane preparation. Different phase separation mechanisms were identified for CTA, CDA, and CAP polymer solutions prepared using the screened solvents for membrane preparation. CTA solutions in binary organic solvents possessed the appropriate properties for membrane preparation via liquid–liquid phase separation, followed by a solid–liquid phase separation (polymer crystallization) mechanism. For the prepared CTA hollow fiber membranes, the maximum stress was 3–5 times higher than those of the CDA and CAP membranes. The temperature gap between the cloud point and crystallization onset in the polymer solution plays a crucial role in membrane formation. All of the CTA, CDA, and CAP membranes had a very porous bulk structure with a pore size of ∼100 nm or larger, as well as pores several hundred nanometers in size at the inner surface. Using an air gap distance of 0 mm, the appropriate organic solvents mixed in an optimized ratio, and a solvent for cellulose derivatives as the quench bath media, it was possible to obtain a CTA MF hollow fiber membrane with high pure water permeance and notably high rejection of 100 nm silica nanoparticles. It is expected that these membranes can play a great role in pharmaceutical separation.

参考文献

(1) Mulder, M. Basic Principles of Membrane Technology, Kluwer Academic Publisher, 1997; p 576.

(2) Mollahosseini, A.; Abdelrasoul, A.; Shoker, A. A Critical Review of Recent Advances in Hemodialysis Membranes Hemocompatibility and Guidelines for Future Development. Mater. Chem. Phys. 2020, 248, No. 122911.

(3) Budtova, T.; Navard, P. Cellulose in NaOH−Water Based Solvents: A Review. Cellulose 2016, 23, 5−55.

(4) Wang, D. A Critical Review of Cellulose-Based Nanomaterials for Water Purification in Industrial Processes. Cellulose 2019, 26, 687−701.

(5) Douglass, E. F.; Avci, H.; Boy, R.; Rojas, O. J.; Kotek, R. A Review of Cellulose and Cellulose Blends for Preparation of BioDerived and Conventional Membranes, Nanostructured Thin Films, and Composites. Polym. Rev. 2018, 58, 102−163.

(6) Ho, N. A. D.; Leo, C. P. A Review on the Emerging Applications of Cellulose, Cellulose Derivatives and Nanocellulose in Carbon Capture. Environ. Res. 2021, 197, No. 111100.

(7) Lu, P.; Gao, Y.; Umar, A.; Zhou, T.; Wang, J.; Zhang, Z.; Huang, L.; Wang, Q. Recent Advances in Cellulose-Based Forward Osmosis Membrane. Sci. Adv. Mater. 2015, 7, 2182−2192.

(8) Sjahro, N.; Yunus, R.; Abdullah, L. C.; Rashid, S. A.; Asis, A. J.; Akhlisah, Z. N. Recent Advances in the Application of Cellulose Derivatives for Removal of Contaminants from Aquatic Environments. Cellulose 2021, 28, 7521−7557.

(9) Doelker, E. Cellulose Derivatives; Springer: Berlin, 1993; pp 199− 265.

(10) Laîné, J.-M.; Campos, C.; Baudin, I.; Janex, M.-L. Understanding Membrane Fouling: A Review of Over a Decade of Research. Water Supply 2003, 3, 155−164.

(11) Yu, Y.; Wu, Q.-Y.; Liang, H.-Q.; Gu, L.; Xu, Z.-K. Preparation and Characterization of Cellulose Triacetate Membranes via Thermally Induced Phase Separation. J. Appl. Polym. Sci. 2017, 134, 44454.

(12) Koseoglu-Imer, D. Y.; Dizge, N.; Koyuncu, I. Enzymatic Activation of Cellulose Acetate Membrane for Reducing of Protein Fouling. Colloids Surf., B 2012, 92, 334−339.

(13) Ul-Islam, M.; Ul-Islam, S.; Yasir, S.; Fatima, A.; Ahmed, W. M.; Lee, S. Y.; Manan, S.; Ullah, W. M. Potential Applications of Bacterial Cellulose in Environmental and Pharmaceutical Sectors. Curr. Pharm. Des. 2020, 26, 5793−5806.

(14) Higuchi, A.; Tamai, M.; Ko, Y.-A.; Tagawa, Y.-I.; Wu, Y.-H.; Freeman, B. D.; Bing, J.-T.; Chang, Y.; Ling, Q.-D. Polymeric Membranes for Chiral Separation of Pharmaceuticals and Chemicals. Polym. Rev. 2010, 50, 113−143.

(15) Sakai, K.; Yamauchi, T.; Nakasu, F.; Ohe, T. Biodegradation of Cellulose Acetate by Neisseria sicca. Biosci. Biotechnol. Biochem. 1996, 60, 1617−1622.

(16) Ghaffarian, V.; Mousavi, S. M.; Bahreini, M.; Shoaei Parchin, N. Biodegradation of Cellulose Acetate/Poly(butylene succinate) Membrane. Int. J. Environ. Sci. Technol. 2017, 14, 1197−1208.

(17) Luo, W.; Xie, M.; Hai, F. I.; Price, W. E.; Nghiem, L. D. Biodegradation of Cellulose Triacetate and Polyamide Forward Osmosis Membranes in an Activated Sludge Bioreactor: Observations and Implications. J. Membr. Sci. 2016, 510, 284−292.

(18) Lloyd, D. R.; Kinzer, K. E.; Tseng, H. S. Microporous Membrane Formation via Thermally Induced Phase Separation. I. Solid-Liquid Phase Separation. J. Membr. Sci. 1990, 52, 239−261.

(19) Ren, J.; Wang, R. Preparation of Polymeric Membranes. In Membrane and Desalination Technologies, Wang, L. K.; Chen, J. P.; Hung, Y.-T.; Shammas, N. K., Eds.; Humana Press, 2008; Vol. 13, pp 47−100.

(20) Matsuyama, H.; Karkhanechi, H.; Rajabzadeh, S. Polymeric Membrane Fabrication via Thermally Induced Phase Separation (TIPS) Method. In Hollow Fiber Membranes, Chung, T.-S.; Feng, Y., Eds.; Elsevier, 2021; Chapter 3, pp 57−83.

(21) Shibutani, T.; Kitaura, T.; Ohmukai, Y.; Maruyama, T.; Nakatsuka, S.; Watabe, T.; Matsuyama, H. Membrane Fouling Properties of Hollow Fiber Membranes Prepared from Cellulose Acetate Derivatives. J. Membr. Sci. 2011, 376, 102−109.

(22) Fu, X. Y.; Sotani, T.; Matsuyama, H. Effect of Membrane Preparation Method on the Outer Surface Roughness of Cellulose Acetate Butyrate Hollow Fiber Membrane. Desalination 2008, 233, 10−18.

(23) Xing, X.-Y.; Gu, L.; Jin, Y.; Sun, R.; Xie, M.-Y.; Wu, Q.-Y. Fabrication and Characterization of Cellulose Triacetate Porous Membranes by Combined Nonsolvent-Thermally Induced Phase Separation. Cellulose 2019, 26, 3747−3762.

(24) Hansen, C. M. Hansen Solubility Parameters: A User’s Handbook, 2nd ed.; CRC Press, 2007.

(25) Fang, C.; Jeon, S.; Rajabzadeh, S.; Cheng, L.; Fang, L.; Matsuyama, H. Tailoring the surface pore size of hollow fiber membranes in the TIPS process. J. Mater. Chem. A 2018, 6, 20712− 20724.

(26) Fang, C.; Jeon, S.; Rajabzadeh, S.; Fang, L.-F.; Cheng, L.; Matsuyama, H. Tailoring both the surface pore size and sub-layer structures of PVDF membranes prepared by the TIPS process with a triple orifice spinneret. J. Mater. Chem. A 2018, 6, 20712−20724.

(27) Kim, K.; Ingole, P. G.; Kim, J.-H.; Lee, H.-K. Separation performance of PEBAX/PEI hollow fiber composite membrane for SO2/CO2/N2 mixed gas. Chem. Eng. J. 2013, 233, 242−250.

(28) Choi, W.; Ingole, P. G.; Parka, J.-S.; Lee, D.-W.; Kim, J.-H.; Lee, H.-K. H2/CO mixture gas separation using compositehollow fiber membranes prepared by interfacialpolymerization method. Chem. Eng. Res. Des. 2015, 102, 297−306.

(29) Choi, W.; Ingole, P. G.; Li, H.; Kim, J.-H.; Lee, H.-K.; Baek, I.- H. Preparation of facilitated transport hollow fiber membrane for gas separation using cobalt tetraphenylporphyrin complex as a coating material. J. Cleaner Prod. 2016, 133, 1008−1016.

(30) Rajabzadeh, S.; Maruyama, T.; Sotani, T.; Matsuyama, H. Preparation of PVDF hollow fiber membrane from a ternary polymer/ solvent/non-solvent system via thermally induced phase separation (TIPS) method. Sep. Purif. Technol. 2008, 63, 415−423.

(31) Shang, M.; Matsuyama, H.; Teramoto, M.; Lloyd, D. R.; Kubota, N. Preparation and Membrane Performance of Poly- (ethylene-co-vinyl alcohol) Hollow Fiber Membrane via Thermally Induced Phase Separation. Polymer 2003, 44, 7441−7447.

(32) Matsuyama, H.; Ohga, K.; Maki, T.; Tearamoto, M.; Nakatsuka, S. Porous Cellulose Acetate Membrane Prepared by Thermally Induced Phase Separation. J. Appl. Polym. Sci. 2003, 89, 3951−3955.

(33) Nguyen, T. P. N.; Yun, E.-T.; Kim, I.-C.; Kwon, Y.-N. Preparation of Cellulose Triacetate/Cellulose Acetate (CTA/CA)- Based Membranes for Forward Osmosis. J. Membr. Sci. 2013, 433, 49−59.

(34) Li, H.-J.; Cao, Y.-M.; Qin, J.-J.; Jie, X.-M.; Wang, T.-H.; Liu, J.- H.; Yuan, Q. Development and Characterization of Anti-Fouling Cellulose Hollow Fiber UF Membranes for Oil−Water Separation. J. Membr. Sci. 2006, 279, 328−335.

(35) Matsuyama, H.; Yuasa, M.; Kitamura, Y.; Teramoto, M.; Lloyd, D. R. Structure Control of Anisotropic and Asymmetric Polypropylene Membrane Prepared by Thermally Induced Phase Separation. J. Membr. Sci. 2000, 179, 91−100.

(36) Matsuyama, H.; Rajabzadeh, S.; Karkhanechi, H.; Jeon, S. PVDF Hollow Fibers Membranes. In Comprehensive Membrane Science and Engineering, Elsevier Science, 2017; pp 137−189.

(37) Liu, Y.; Liu, Z.; Morisato, A.; Bhuwania, N.; Chinn, D.; Koros, W. J. Natural Gas Sweetening Using a Cellulose Triacetate Hollow Fiber Membrane Illustrating Controlled Plasticization Benefits. J. Membr. Sci. 2020, 601, No. 117910.

(38) Raza, A.; Farrukh, S.; Hussain, A.; Khan, I.; Othman, M. H. D.; Ahsan, M. Performance Analysis of Blended Membranes of Cellulose Acetate with Variable Degree of Acetylation for CO2/CH4 Separation. Membranes 2021, 11, 245.

(39) Rajabzadeh, S.; Maruyama, T.; Sotani, T.; Matsuyama, H. Preparation of PVDF Hollow Fiber Membrane from a Ternary Polymer/Solvent/Nonsolvent System via Thermally Induced Phase Separation (TIPS) Method. Sep. Purif. Technol. 2008, 63, 415−423.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る