リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Preparation of Chemically Resistant Cellulose Benzoate Hollow Fiber Membrane via Thermally Induced Phase Separation Method」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Preparation of Chemically Resistant Cellulose Benzoate Hollow Fiber Membrane via Thermally Induced Phase Separation Method

Takao, Shota Rajabzadeh, Saeid Shibata, Masahide Otsubo, Chihiro Hamada, Toyozo Kato, Noriaki Nakagawa, Keizo Kitagawa, Tooru Matsuyama, Hideto Yoshioka, Tomohisa 神戸大学

2022.12

概要

For the first time, we have successfully fabricated microfiltration (MF) hollow fiber membranes by the thermally induced phase separation (TIPS) and non-solvent induced phase separation (NIPS) methods using cellulose acetate benzoate (CBzOH), which is a cellulose derivative with considerable chemical resistance. To obtain an appropriate CBzOH TIPS membrane, a comprehensive solvent screening was performed to choose the appropriate solvent to obtain a membrane with a porous structure. In parallel, the CBzOH membrane was prepared by the NIPS method to compare and evaluate the effect of membrane structure using the same polymer material. Prepared CBzOH membrane by TIPS method showed high porosity, pore size around 100 nm or larger and high pure water permeability (PWP) with slightly low rection performance compared to that by NIPS. On the contrary, CBzOH membranes prepared with the NIPS method showed three times lower PWP with higher rejection. The chemical resistance of the prepared CBzOH membranes was compared with that of cellulose triacetate (CTA) hollow fiber membrane, which is a typical cellulose derivative as a control membrane, using a 2000 ppm sodium hypochlorite (NaClO) solution. CBzOH membranes prepared with TIPS and NIPS methods showed considerable resistance against the NaClO solution regardless of the membrane structure, porosity and pore size. On the other hand, when the CTA membrane, as the control membrane, was subjected to the NaClO solution, membrane mechanical strength sharply decreased over the exposure time to NaClO. It is interesting that although the CBzOH TIPS membrane showed three times higher pure water permeability than other membranes with slightly lower rejection and considerably higher NaClO resistance, the mechanical strength of this membrane is more than two times higher than other membranes. While CBzOH samples showed no change in chemical structure and contact angle, CTA showed considerable change in chemical structure and a sharp decrease in contact angle after treatment with NaClO. Thus, CBzOH TIPS hollow fiber membrane is noticeably interesting considering membrane performance in terms of filtration performance, mechanical strength and chemical resistance on the cost of slightly losing rejection performance.

参考文献

1. Ren, J.; Wang, R. Preparation of Polymeric Membranes. In Membrane and Desalination Technologies, Handbook of Environmental Engineering; Wang, L.K., Chen, J.P., Hung, Y.-T., Shammas, N.K., Eds.; Humana Press: Totowa, NJ, USA, 2008; Volume 13, pp. 47–100.

2. Mulder, M. Basic Principles of Membrane Technology; Kluwer Academic Publisher: Amsterdam, The Netherlands, 1997.

3. Lu, X.; Elimelech, M. Fabrication of desalination membranes by interfacial polymerization: History, current efforts, and future directions. Chem. Soc. Rev. 2021, 50, 6290–6307. [CrossRef] [PubMed]

4. Ji, C.; Zhai, Z.; Jiang, C.; Hu, P.; Zhao, S.; Xue, S.; Yang, Z.; He, T.; Niu, Q.J. Recent advances in high-performance TFC membranes: A review of the functional interlayers. Desalination 2021, 500, 114869. [CrossRef]

5. Cui, Z.; Drioli, E.; Lee, Y.M. Recent progress in fluoropolymers for membranes. Prog. Polym. Sci. 2014, 39, 164–198. [CrossRef]

6. Peng, N.; Widjojo, N.; Sukitpaneenit, P.; Teoh, M.M.; Lipscomb, G.G.; Chung, T.-S.; Lai, J.-Y. Evolution of polymeric hollow fibers as sustainable technologies: Past, present, and future. Prog. Polym. Sci. 2012, 37, 1401–1424. [CrossRef]

7. Ulbricht, M. Advanced functional polymer membranes. Polymer 2006, 47, 2217–2262. [CrossRef]

8. Ul-Islam, M.; Ul-Islam, S.; Yasir, S.; Fatima, A.; Ahmed, W.; Lee, Y.S.; Manan, S.; Ullah, M.W. Potential Applications of Bacterial Cellulose in Environmental and Pharmaceutical Sectors. Curr. Pharm. Des. 2020, 26, 5793–5806. [CrossRef] [PubMed]

9. Peng, B.L.; Yao, Z.L.; Wang, X.C.; Crombeen, M.; Sweeney, D.G.; Tam, K.C. Cellulose-based materials in wastewater treatment of petroleum industry. Green Energy Environ. 2020, 5, 37–49. [CrossRef]

10. Mollahosseini, A.; Abdelrasoul, A.; Shoker, A. A critical review of recent advances in hemodialysis membranes hemocompatibility and guidelines for future development. Mater. Chem. Phys. 2020, 248, 122911. [CrossRef]

11. Wang, D. A critical review of cellulose-based nanomaterials for water purification in industrial processes. Cellulose 2019, 26, 687–701. [CrossRef]

12. Douglass, E.F.; Avci, H.; Boy, R.; Rojas, O.J.; Kotek, R. A Review of Cellulose and Cellulose Blends for Preparation of Bio-derived and Conventional Membranes, Nanostructured Thin Films, and Composites. Polym. Rev. 2018, 58, 102–163. [CrossRef]

13. Lu, P.; Gao, Y.; Umar, A.; Zhou, T.; Wang, J.; Zhang, Z.; Huang, L.; Wang, Q. Recent Advances in Cellulose-Based Forward Osmosis Membrane. Sci. Adv. Mater. 2015, 7, 2182–2192. [CrossRef]

14. Loeb, S.; Sourirajan, S. Sea Water Demineralization by Means of an Osmotic Membrane. In Saline Water Conversion—II; Advances in Chemistry; American Chemical Society: Washington, DC, USA, 1963; Volume 38, pp. 117–132.

15. Uemura, T.; Kurihara, M. Chlorine Resistance of Reverse Osmosis Membranes and Changes in Membrane Structure and Performance Caused by Chlorination Degradation. Bull. Soc. Sea Water Sci. Jpn. 2003, 57, 498–507. [CrossRef]

16. Ohya, H. Deterioration of Asymmetric Cellulose Acetate Membrane with Sodium Hypochlorite-Structural and Chemical Change. Kagaku-Kougakuronbunshu 1981, 7, 267–271. [CrossRef]

17. Hashizume, T.; Okamoto, Y.; Nagai, K.; Shimamoto, S. Mechanism of sodium-hypochlorite-induced degradation of cellulose acetate and the enhancement of its degradation resistance by chemical modification. Text. Res. J. 2022, 92, 2487–2500. [CrossRef]

18. Doelker, E. Cellulose derivatives. In Proceedings of the Biopolymers I; Springer: Berlin/Heidelberg, Germany, 1993; pp. 199–265.

19. Budtova, T.; Navard, P. Cellulose in NaOH–water based solvents: A review. Cellulose 2016, 23, 5–55. [CrossRef]

20. Arkhangelsky, E.; Kuzmenko, D.; Gitis, N.V.; Vinogradov, M.; Kuiry, S.; Gitis, V. Hypochlorite Cleaning Causes Degradation of Polymer Membranes. Tribol. Lett. 2007, 28, 109–116. [CrossRef]

21. Arkhangelsky, E.; Goren, U.; Gitis, V. Retention of organic matter by cellulose acetate membranes cleaned with hypochlorite. Desalination 2008, 223, 97–105. [CrossRef]

22. Silva, M.A.; Belmonte-Reche, E.; de Amorim, M.T.P. Morphology and water flux of produced cellulose acetate membranes reinforced by the design of experiments (DOE). Carbohydr. Polym. 2021, 254, 117407. [CrossRef]

23. Guillen, G.R.; Pan, Y.; Li, M.; Hoek, E.M.V. Preparation and Characterization of Membranes Formed by Nonsolvent Induced Phase Separation: A Review. Ind. Eng. Chem. Res. 2011, 50, 3798–3817. [CrossRef]

24. Vyas, M.D.; Mody, I.C. Morphological study of cellulose acetate benzoate membranes by scanning electron microscopy. Desalination 1982, 42, 107–114. [CrossRef]

25. Vyas, M.D.; Mody, R.C.; Mody, I.C. Development and characterization of cellulose-acetate benzoate flat osmotic membranes. J. Appl. Polym. Sci. 1994, 52, 1031–1035. [CrossRef]

26. Takao, S.; Rajabzadeh, S.; Otsubo, C.; Hamada, T.; Kato, N.; Nakagawa, K.; Shintani, T.; Matsuyama, H.; Yoshioka, T. Preparation of Cellulose Triacetate Microfiltration Hollow Fiber Membranes by Thermally Induced Phase Separation. ACS Omega 2022, 7, 33783–33792. [CrossRef] [PubMed]

27. Hansen, C.M. Hansen Solubility Parameters. A User’s Handbook, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2007.

28. Shang, M.; Matsuyama, H.; Teramoto, M.; Lloyd, D.R.; Kubota, N. Preparation and membrane performance of poly(ethylene-co- vinyl alcohol) hollow fiber membrane via thermally induced phase separation. Polymer 2003, 44, 7441–7447. [CrossRef]

29. Shibutani, T.; Kitaura, T.; Ohmukai, Y.; Maruyama, T.; Nakatsuka, S.; Watabe, T.; Matsuyama, H. Membrane fouling properties of hollow fiber membranes prepared from cellulose acetate derivatives. J. Membr. Sci. 2011, 376, 102–109. [CrossRef]

30. Fu, X.Y.; Sotani, T.; Matsuyama, H. Effect of membrane preparation method on the outer surface roughness of cellulose acetate butyrate hollow fiber membrane. Desalination 2008, 233, 10–18. [CrossRef]

31. Ho, N.A.D.; Leo, C.P. A review on the emerging applications of cellulose, cellulose derivatives and nanocellulose in carbon capture. Environ. Res. 2021, 197, 111100. [CrossRef] [PubMed]

32. Yu, Y.; Wu, Q.-Y.; Liang, H.-Q.; Gu, L.; Xu, Z.-K. Preparation and characterization of cellulose triacetate membranes via thermally induced phase separation. J. Appl. Polym. Sci. 2017, 134, 44454. [CrossRef]

33. Xing, X.-Y.; Gu, L.; Jin, Y.; Sun, R.; Xie, M.-Y.; Wu, Q.-Y. Fabrication and characterization of cellulose triacetate porous membranes by combined nonsolvent-thermally induced phase separation. Cellulose 2019, 26, 3747–3762. [CrossRef]

34. Matsuyama, H.; Ohga, K.; Maki, T.; Tearamoto, M.; Nakatsuka, S. Porous cellulose acetate membrane prepared by thermally induced phase separation. J. Appl. Polym. Sci. 2003, 89, 3951–3955. [CrossRef]

35. Nguyen, T.P.N.; Yun, E.-T.; Kim, I.-C.; Kwon, Y.-N. Preparation of cellulose triacetate/cellulose acetate (CTA/CA)-based membranes for forward osmosis. J. Membr. Sci. 2013, 433, 49–59. [CrossRef]

36. Li, H.-J.; Cao, Y.-M.; Qin, J.-J.; Jie, X.-M.; Wang, T.-H.; Liu, J.-H.; Yuan, Q. Development and characterization of anti-fouling cellulose hollow fiber UF membranes for oil–water separation. J. Membr. Sci. 2006, 279, 328–335. [CrossRef]

37. Rajabzadeh, S.; Maruyama, T.; Sotani, T.; Matsuyama, H. Preparation of PVDF hollow fiber membrane from a ternary poly- mer/solvent/nonsolvent system via thermally induced phase separation (TIPS) method. Sep. Purif. Technol. 2008, 63, 415–423. [CrossRef]

38. Zhao, J.; Chong, J.Y.; Shi, L.; Wang, R. Explorations of combined nonsolvent and thermally induced phase separation (N-TIPS) method for fabricating novel PVDF hollow fiber membranes using mixed diluents. J. Membr. Sci. 2019, 572, 210–222. [CrossRef]

39. Matsuyama, H.; Rajabzadeh, S.; Karkhanechi, H.; Jeon, S. PVDF Hollow Fibers Membranes. Compr. Membr. Sci. Eng. 2017, 137–189.

40. Matsuyama, H.; Karkhanechi, H.; Rajabzadeh, S. Chapter 3—Polymeric membrane fabrication via thermally induced phase separation (TIPS) method. In Hollow Fiber Membranes; Chung, T.-S., Feng, Y., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 57–83.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る