リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Reduced Temporal Activation During a Verbal Fluency Task is Associated with Poor Motor Speed in Patients with Major Depressive Disorder」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Reduced Temporal Activation During a Verbal Fluency Task is Associated with Poor Motor Speed in Patients with Major Depressive Disorder

Kiriyama, Tomohiko Tanemura, Rumi Nakamura, Yoshihiro Takemoto, Chiaki Hashimoto, Mariko Utsumi, Hirohiko 神戸大学

2020.08.18

概要

Objective Substantial research has revealed cognitive function impairments in patients with major depressive disorder (MDD). However, the relationship between MDD cognitive function impairment and brain activity is yet to be elucidated. This study aimed to reveal this relationship using near-infrared spectroscopy (NIRS) to extensively measure frontotemporal cortex function. Methods We recruited 18 inpatients with MDD and 22 healthy controls. Regional oxygenated hemoglobin changes (oxy-Hb) were measured during a verbal fluency task and its relationship to cognitive function was assessed. Cognitive function was assessed using the Japanese version of the Brief Assessment of Cognition in Schizophrenia. Results Compared to healthy controls, patients with MDD displayed poorer motor speed, attention and speed of information processing, and executive function. In the bilateral prefrontal and temporal surface regions, regional oxy-Hb changes were significantly lower in patients with MDD than in healthy individuals. Moreover, we observed a correlation between reduced activation in the left temporal region and poor motor speed in patients with MDD. Conclusion We suggest that reduced activation in the left temporal region in patients with MDD could be a biomarker of poor motor speed. Additionally, NIRS may be useful as a noninvasive, clinical measurement tool for assessing motor speed in these patients.

この論文で使われている画像

参考文献

1. Bromet E, Andrade LH, Hwang I, Sampson NA, Alonso J, de Girolamo G, et al. Cross-national epidemiology of DSM-IV major depressive

episode. BMC Med 2011;9:90.

2. Kessler RC, McGonagle KA, Swartz M, Blazer DG, Nelson CB. Sex

and depression in the National Comorbidity Survey. I: Lifetime prevalence, chronicity and recurrence. J Affect Disord 1993;29:85-96.

3. Doris A, Ebmeier K, Shajahan P. Depressive illness. Lancet 1999;354:

1369-1375.

4. Miller WR. Psychological deficit in depression. Psychol Bull 1975;82:

238-260.

5. Bora E, Harrison BJ, Yücel M, Pantelis C. Cognitive impairment in euthymic major depressive disorder: a meta-analysis. Psychol Med 2013;

43:2017-2026.

6. Lee RS, Hermens DF, Porter MA, Redoblado-Hodge MA. A metaanalysis of cognitive deficits in first-episode Major Depressive Disorder. J Affect Disord 2012;140:113-124.

7. Snyder HR. Major depressive disorder is associated with broad impairments on neuropsychological measures of executive function: a metaanalysis and review. Psychol Bull 2013;139:81-132.

8. Trivedi MH, Greer TL. Cognitive dysfunction in unipolar depression:

implications for treatment. J Affect Disord 2014;152-154:19-27.

9. Wagner S, Doering B, Helmreich I, Lieb K, Tadić A. A meta-analysis

of executive dysfunctions in unipolar major depressive disorder without psychotic symptoms and their changes during antidepressant

treatment. Acta Psychiatr Scand 2012;125:281-292.

10. Jaeger J, Berns S, Uzelac S, Davis-Conway S. Neurocognitive deficits

and disability in major depressive disorder. Psychiatry Res 2006;145:

39-48.

11. Kiosses DN, Alexopoulos GS. IADL functions, cognitive deficits, and severity of depression: a preliminary study. Am J Geriatr Psychiatry 2005;

13:244-249.

12. Westheide J, Quednow BB, Kuhn KU, Hoppe C, Cooper-Mahkorn D,

Hawellek, et al. Executive performance of depressed suicide attempters: the role of suicidal ideation. Eur Arch Psychiatry Clin Neurosci

2008;258:414-421.

13. Drevets WC. Neuroimaging studies of mood disorders. Biol Psychiatry 2000;48:813-829.

14. Lorenzetti V, Allen NB, Fornito A, Yücel M. Structural brain abnormalities in major depressive disorder: a selective review of recent MRI

studies. J Affect Disord 2009;117:1-17.

15. Rogers MA, Kasai K, Koji M, Fukuda R, Iwanami A, Nakagome K, et

al. Executive and prefrontal dysfunction in unipolar depression: a review of neuropsychological and imaging evidence. Neurosci Res

2004;50:1-11.

16. Cox SR, Ferguson KJ, Royle NA, Shenkin SD, MacPherson SE, MacLullich AM, et al. A systematic review of brain frontal lobe parcellation techniques in magnetic resonance imaging. Brain Struct Funct

2014;219:1-22.

www.psychiatryinvestigation.org 811

Temporal Activation Correlates Motor speed in MDD

17. Erickson LC, Rauschecker JP, Turkeltaub PE. Meta-analytic connectivity modeling of the human superior temporal sulcus. Brain Struct Funct

2017;222:267-285.

18. Squire LR, Stark CE, Clark RE. The medial temporal lobe. Annu Rev

Neurosci 2004;27:279-306.

19. Szczepanski SM, Knight RT. Insights into human behavior from lesions

to the prefrontal cortex. Neuron 2014;83:1002-1018.

20. Hirosawa R, Narumoto J, Sakai Y, Nishida S, Ishida T, Nakamae T, et

al. Reduced dorsolateral prefrontal cortical hemodynamic response in

adult obsessive-compulsive disorder as measured by near-infrared

spectroscopy during the verbal fluency task. Neuropsychiatr Dis Treat

2013;9:955-962.

21. Kameyama M, Fukuda M, Yamagishi Y, Sato T, Uehara T, Ito M, et al.

Frontal lobe function in bipolar disorder: a multichannel near-infrared

spectroscopy study. Neuroimage 2006;29:172-184.

22. Matsuo K, Taneichi K, Matsumoto A, Ohtani T, Yamasue H, Sakano Y, et

al. Hypoactivation of the prefrontal cortex during verbal fluency test in

PTSD: a near-infrared spectroscopy study. Psychiatry Res 2003;124:1-10.

23. Matsuo K, Onodera Y, Hamamoto T, Muraki K, Kato N, Kato T. Hypofrontality and microvascular dysregulation in remitted late-onset

depression assessed by functional near-infrared spectroscopy. Neuroimage 2005;26:234-242.

24. Suto T, Fukuda M, Ito M, Uehara T, Mikuni M. Multichannel near-infrared spectroscopy in depression and schizophrenia: cognitive brain

activation study. Biol Psychiatry 2004;55:501-511.

25. Boas DA, Dale AM, Franceschini, MA. Diffuse optical imaging of

brain activation: approaches to optimizing image sensitivity, resolution, and accuracy. Neuroimage 2004;23:S275-288.

26. Strangman G, Boas DA, Sutton JP. Non-invasive neuroimaging using

near-infrared light. Biol Psychiatry 2002;52:679-693.

27. Tomioka H, Yamagata B, Kawasaki S, Pu S, Iwanami A, Hirano J, et al.

A longitudinal functional neuroimaging study in medication-naïve depression after antidepressant treatment. PLoS One 2015;10:e0120828.

28. Takizawa R, Fukuda M, Kawasaki S, Kasai K, Mimura M, Pu S, et al.

Neuroimaging-aided differential diagnosis of the depressive state.

Neuroimage 2014;85:498-507.

29. Liu X, Sun G, Zhang X, Xu B, Shen C, Shi L, et al. Relationship between the prefrontal function and the severity of the emotional symptoms during a verbal fluency task in patients with major depressive

disorder: a multi-channel NIRS study. Prog Neuropsychopharmacol

Biol Psychiatry 2014;54:114-121.

30. Noda T, Yoshida S, Matsuda T, Okamoto N, Sakamoto K, Koseki S, et

al. Frontal and right temporal activations correlate negatively with depression severity during verbal fluency task: a multi-channel near-infrared spectroscopy study. J Psychiatr Res 2012;46:905-912.

31. Pu S, Matsumura H, Yamada T, Ikezawa S, Mitani H, Adachi A, et al.

Reduced frontopolar activation during verbal fluency task associated

with poor social functioning in late-onset major depression: multichannel near-infrared spectroscopy study. Psychiatry Clin Neurosci

2008;62:728-737.

32. Pu S, Nakagome K, Yamada T, Yokoyama K, Matsumura H, Mitani H,

et al. The relationship between the prefrontal activation during a verbal fluency task and stress-coping style in major depressive disorder: a

near-infrared spectroscopy study. J Psychiatr Res 2012;46:1427-1434.

33. Ikeda E, Shiozaki K, Ikeda H, Suzuki M, Hirayasu Y. Prefrontal dysfunction in remitted depression at work reinstatement using near-infrared spectroscopy. Psychiatry Res 2013;214:254-259.

34. Koseki S, Noda T, Yokoyama S, Kunisato Y, Ito D, Suyama H, et al. The

relationship between positive and negative automatic thought and activity in the prefrontal and temporal cortices: a multi-channel near-infrared spectroscopy (NIRS) study. J Affect Disord 2013;151:352-359.

35. Tsujii N, Mikawa W, Akashi H, Tsujimoto E, Adachi T, Kirime E, et al.

Right temporal activation differs between melancholia and nonmelancholic depression: a multichannel near-infrared spectroscopy study. J

Psychiatr Res 2014;55:1-7.

812

Psychiatry Investig 2020;17(8):804-813

36. Tsujii N, Mikawa W, Tsujimoto E, Adachi T, Niwa A, Ono H, et al. Reduced left precentral regional responses in patients with major depressive disorder and history of suicide attempts. PLoS One 2017;12:

e0175249.

37. American Psychiatric Association. Diagnostic and Statistical Manual

of Mental Disorders (5th Ed). Washington, D.C.: American Psychiatric

Publishing; 2013.

38. Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 1971;9:97-113.

39. Inada T, Inagaki A. Psychotropic dose equivalence in Japan. Psychiatry

Clin Neurosci 2015;69:440-447.

40. Hamilton M. A rating scale for depression. J Neurol Neurosurg Psychiatry 1960;23:56-62.

41. Matsuoka K, Uno M, Kasai K, Koyama K, Kim Y. Estimation of premorbid IQ in individuals with Alzheimer’s disease using Japanese

ideographic script (Kanji) compound words: Japanese version of National Adult Reading Test. Psychiatry Clin Neurosci 2006;60:332-339.

42. Keefe RS, Goldberg TE, Harvey PD, Gold JM, Poe MP, Coughenour L.

The Brief Assessment of Cognition in Schizophrenia: reliability, sensitivity, and comparison with a standard neurocognitive battery.

Schizophr Res 2004;68:283-297.

43. Kaneda Y, Sumiyoshi T, Keefe R, Ishimoto Y, Numata S, Ohmori T.

Brief assessment of cognition in schizophrenia: validation of the Japanese version. Psychiatry Clin Neurosci 2007;61:602-609.

44. Pu S, Setoyama S, Noda T. Association between cognitive deficits and

suicidal ideation in patients with major depressive disorder. Sci Rep

2017;7:11637.

45. Hidese S, Ota M, Wakabayashi C, Noda T, Ozawa H, Okubo T, et al. Effects of chronic l-theanine administration in patients with major depressive disorder: an open-label study. Acta Neuropsychiatr 2017;29:72-79.

46. Hidese S, Ota M, Matsuo J, Ishida I, Hiraishi M, Yoshida S, et al. Association of obesity with cognitive function and brain structure in patients

with major depressive disorder. J Affect Disord 2018;225:188-194.

47. Yamashita Y, Maki A, Ito Y, Watanabe E, Koizumi H. Noninvasive

near-infrared topography of human brain activity using intensity

modulation spectroscopy. Opt Eng 1996;35:1046-1049.

48. Toronov V, Webb A, Choi JH, Wolf M, Michalos A, Gratton E, et al.

Investigation of human brain hemodynamics by simultaneous nearinfrared spectroscopy and functional magnetic resonance imaging.

Med Phys 2001;28:521-527.

49. Okada E, Delpy DT. Near-infrared light propagation in an adult head

model. II. Effect of superficial tissue thickness on the sensitivity of the

near-infrared spectroscopy signal. Appl Opt 2003;42:2915-2922.

50. Singh AK, Okamoto M, Dan H, Jurcak V, Dan I. Spatial registration of

multichannel multi-subject fNIRS data to MNI space without MRI.

Neuroimage 2005;27:842-851.

51. Tsuzuki D, Jurcak V, Singh AK, Okamoto M, Watanabe E, Dan I. Virtual spatial registration of stand-alone fNIRS data to MNI space. Neuroimage 2007;34:1506-1518.

52. Shattuck DW, Mirza M, Adisetiyo V, Hojatkashani C, Salamon G, Narr

KL, et al. Construction of a 3D probabilistic atlas of human cortical

structures. Neuroimage 2007;39:1064-1080.

53. Takizawa R, Kasai K, Kawakubo Y, Marumo K, Kawasaki S, Yamasue

H, et al. Reduced frontopolar activation during verbal fluency task in

schizophrenia: a multi-channel near-infrared spectroscopy study.

Schizophr Res 2008;99:250-262.

54. Strangman G, Culver JP, Thompson JH, Boas DA. A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during

functional brain activation. Neuroimage 2002;17:719-731.

55. Singh AK, Dan I. Exploring the false discovery rate in multichannel

NIRS. Neuroimage 2006;33:542-549.

56. Gorwood P1, Corruble E, Falissard B, Goodwin GM. Toxic effects of

depression on brain function: impairment of delayed recall and the

cumulative length of depressive disorder in a large sample of depressed

outpatients. Am J Psychiatry 2008:165:731-739.

T Kiriyama et al.

57. Kiernan JA. Anatomy of the temporal lobe. Epilepsy Res Treat 2012;

2012:176157.

58. Pirmoradi M, Jemel B, Gallagher A, Tremblay J, D’Hondt F, Nguyen

DK, et al. Verbal memory and verbal fluency tasks used for language

localization and lateralization during magnetoencephalography. Epi-

lepsy Res 2016;119:1-9.

59. Tankus A, Fried I. Visuomotor coordination and motor representation

by human temporal lobe neurons. J Cogn Neurosci 2012;24:600-610.

60. Mayberg HS, Lewis PJ, Regenold W, Wagner HN Jr. Paralimbic hypoperfusion in unipolar depression. J Nucl Med 1994;35:929-934.

www.psychiatryinvestigation.org 813

Supplementary Table 1. Correlations between mean oxy-Hb changes and demographic or clinical variables

Correlation analysis

Pearson

Spearman

Clinical variables

Correlation coefficient

p value

Age

-0.454 to 0.426

0.078 to 0.974

Estimated IQ

-0.440 to 0.328

0.116 to 1.000

Years of educations

-0.348 to 0.348

0.170 to 1.000

HAM-D score

-0.200 to 0.681

0.003 to 0.990

Illness duration

-0.465 to 0.479

0.070 to 0.994

Duration of depressive episodes

-0.263 to 0.471

0.076 to 0.990

Task performance

-0.473 to 0.183

0.048 to 0.988

Imipramine dose

-0.493 to 0.258

0.052 to 0.987

Chlorpromazine dose

-0.411 to 0.200

0.144 to 1.000

Diazepam dose

-0.321 to 0.263

0.225 to 1.000

oxy-Hb: oxygenated hemoglobin, IQ: intelligence quotient, HAM-D: 17-item Hamilton Rating Scale for Depression

Supplementary Table 2. Correlations between mean oxy-Hb changes and the other five BACS-J subscale scores

Correlation analysis

Pearson

Spearman

Correlation coefficient

p value

Verbal memory

Clinical variables

-0.641 to 0.497

0.010 to 0.977

Verbal fluency

-0.612 to 0.552

0.009 to 0.985

Attention and speed of information processing

-0.554 to 0.276

0.032 to 0.994

Executive function

-0.418 to 0.335

0.121 to 0.989

Working memory

-0.447 to 0.383

0.063 to 0.965

oxy-Hb: oxygenated hemoglobin, BACS-J: Japanese version of the Brief Assessment of Cognition in Schizophrenia

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る