リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Novel variant fibrinogen γp.C352R produced hypodysfibrinogenemia leading to a bleeding episode and failure of infertility treatment」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Novel variant fibrinogen γp.C352R produced hypodysfibrinogenemia leading to a bleeding episode and failure of infertility treatment

Yoda, Masahiro Kaido, Takahiro Kamijo, Tomu Taira, Chiaki Higuchi, Yumiko Arai, Shinpei Okumura, Nobuo 信州大学 DOI:34117991

2022.01.04

概要

Introduction: We identified a patient with a novel heterozygous variant fibrinogen, γp.C352R (Niigata II; N-II), who had a bleeding episode and failed infertility treatment and was suspected to have hypodysfibrinogenemia based on low and discordant fibrinogen levels (functional assay: 0.33 g/L, immunological assay: 0.91 g/L). We analyzed the mechanism of this rare phenotype of a congenital fibrinogen disorder.

Materials and methods: Patient plasma fibrinogen was purified and protein characterization and thrombin-catalyzed fibrin polymerization performed. Recombinant fibrinogen-producing Chinese hamster ovary (CHO) cells were established and the assembly and secretion of variant fibrinogen analyzed by ELISA and western blotting.

Results: Purified N-II plasma fibrinogen had a small lower molecular weight band below the normal γ-chain and slightly reduced fibrin polymerization. A limited proportion of p.C352R fibrinogen was secreted into the culture medium of established CHO cell lines, but the γ-chain of p.C352R was synthesized and variant fibrinogen was assembled inside the cells.

Conclusion: We demonstrated that fibrinogen N-II, γp.C352R, was associated with markedly reduced secretion of variant fibrinogen from CHO cells, that fibrin polymerization of purified plasma fibrinogen was only slightly affected, and that fibrinogen N-II produces hypodysfibrinogenemia in plasma.

この論文で使われている画像

関連論文

参考文献

1. Zhang J-Z, Redman C. Fibrinogen Assembly and Secretion. J Biol Chem. 1996;271:30083–8.

2. Côté HC, Lord ST, Pratt KP. gamma-Chain dysfibrinogenemias: molecular structure- function relationships of naturally occurring mutations in the gamma chain of human fibrinogen. Blood. 1998;92:2195–212.

3. Weisel JW, Stauffacher CV, Bullitt E, Cohen C. A model for fibrinogen: domains and sequence. Science. 1985;230:1388–91.

4. Weisel JW, Litvinov RI. Fibrin Formation, Structure and Properties. Subcell Biochem. 2017;82:405–56.

5. Redman CM, Xia H. Fibrinogen Biosynthesis. Ann N Y Acad Sci. 2001;936:480–95.

6. de Moerloose P, Casini A, Neerman-Arbez M. Congenital fibrinogen disorders: an update. Semin Thromb Hemost. 2013;39:585–95.

7. Casini A, Brungs T, Lavenu-Bombled C, Vilar R, Neerman-Arbez M, de Moerloose P. Genetics, diagnosis and clinical features of congenital hypodysfibrinogenemia: a systematic literature review and report of a novel mutation. J Thromb Haemost. 2017;15:876–88.

8. Kruithof EKO, Dunoyer-Geindre S. Human tissue-type plasminogen activator. Thromb Haemost. 2014;112:243–54.

9. Kruse KB, Dear A, Kaltenbrun ER, Crum BE, George PM, Brennan SO, et al. Mutant Fibrinogen Cleared from the Endoplasmic Reticulum via Endoplasmic Reticulum- Associated Protein Degradation and Autophagy: An Explanation for Liver Disease. Am J Pathol. 2006;168:1299–308.

10. Puls F, Goldschmidt I, Bantel H, Agne C, Bröcker V, Dämmrich M, et al. Autophagy- enhancing drug carbamazepine diminishes hepatocellular death in fibrinogen storage disease. J Hepatol. 2013;59:626–30.

11. Groupe d’Etude sur 1’Hémostase et la Thrombose, Base de données des variants du Fibrinogène. http://site.geht.org/base-de-donnees-fibrinogene/ (accessed 19th March2021)

12. Haneishi A, Terasawa F, Fujihara N, Yamauchi K, Okumura N, Katsuyama T. Recombinant variant fibrinogens substituted at residues γ326Cys and γ339Cys demonstrated markedly impaired secretion of assembled fibrinogen. Thromb Res. 2009;124:368–72.

13. Soya K, Takezawa Y, Okumura N, Terasawa F. Nonsense-mediated mRNA decay was demonstrated in two hypofibrinogenemias caused by heterozygous nonsense mutations of FGG, Shizuoka III and Kanazawa II. Thromb Res. 2013;132:465–70.

14. Okumura N, Gorkun OV, Lord ST. Severely Impaired Polymerization of Recombinant Fibrinogen γ-364 Asp --> His, the Substitution Discovered in a Heterozygous Individual. J Biol Chem. 1997;272:29596–601.

15. Ikeda M, Kobayashi T, Arai S, Mukai S, Takezawa Y, Terasawa F, et al. Recombinant γT305A fibrinogen indicates severely impaired fibrin polymerization due to the aberrant function of hole ‘a’ and calcium binding sites. Thromb Res. 2014;134:518–25.

16. Ikeda M, Arai S, Mukai S, Takezawa Y, Terasawa F, Okumura N. Novel heterozygous dysfibrinogenemia, Sumida (AαC472S), showed markedly impaired lateral aggregation of protofibrils and mildly lower functional fibrinogen levels. Thromb Res. 2015;135:710– 7.

17. Mukai S, Ikeda M, Takezawa Y, Sugano M, Honda T, Okumura N. Differences in the function and secretion of congenital aberrant fibrinogenemia between heterozygous γD320G (Okayama II) and γΔN319-ΔD320 (Otsu I). Thromb Res. 2015;136:1318–24.

18. Fujihara N, Haneishi A, Yamauchi K, Terasawa F, Ito T, Ishida F, et al. A C-terminal amino acid substitution in the γ-chain caused by a novel heterozygous frameshift mutation (Fibrinogen Matsumoto VII) results in hypofibrinogenaemia. Thromb Haemost. 2010;104:213–33.

19. Okumura N, Terasawa F, Tanaka H, Hirota M, Ota H, Kitano K, et al. Analysis of fibrinogen γ-chain truncations shows the C-terminus, particularly γIle387, is essential for assembly and secretion of this multichain protein. Blood. 2002;99:3654–60.

20. Okumura N, Furihata K, Terasawa F, Nakagoshi R, Ueno I, Katsuyama T. Fibrinogen Matsumoto I: a gamma 364 Asp-->His (GAT-->CAT) substitution associated with defective fibrin polymerization. Thromb Haemost. 1996;75:887–91.

21. Terasawa F, Okumura N, Kitano K, Hayashida N, Shimosaka M, Okazaki M, et al. Hypofibrinogenemia Associated With a Heterozygous Missense Mutation γ153Cys to Arg (Matsumoto IV): In Vitro Expression Demonstrates Defective Secretion of the Variant Fibrinogen. Blood. 1999;94:4122–31.

22. Kanda Y. Investigation of the freely available easy-to-use software “EZR” for medical statistics. Bone Marrow Transplant. 2013;48:452–8.

23. Arai S, Ogiwara N, Mukai S, Takezawa Y, Sugano M, Honda T, et al. The fibrous form of intracellular inclusion bodies in recombinant variant fibrinogen-producing cells is specific to the hepatic fibrinogen storage disease-inducible variant fibrinogen. Int J Hematol. 2017;105:758–68.

24. Guglielmone HA, Sanchez MC, Abate Daga D, Bocco JL. A new heterozygous mutation in gamma fibrinogen gene leading to 326 Cys-->Ser substitution in fibrinogen Córdoba is associated with defective polymerization and familial hypodysfibrinogenemia. J Thromb Haemost. 2004;2:352–4.

25. Ushijima A, Komai T, Masukawa A, Oikawa K, Morita N, Asai S, et al. Hypodysfibrinogenemia with a Heterozygous Mutation of γCys326Ser by the Novel Transversion of TGT to TCT in a Patient with Pulmonary Thromboembolism and Right Ventricular Thrombus. Cardiology. 2017;137:167–72.

26. Smith N, Bornikova L, Noetzli L, Guglielmone H, Minoldo S, Backos DS, et al. Identification and characterization of novel mutations implicated in congenital fibrinogen disorders. Res Pract Thromb Haemost. 2018;2:800–11.

27. Meyer M, Franke K, Richter W, Steiniger F, Seyfert UT, Schenk J, et al. New molecular defects in the gamma subdomain of fibrinogen D-domain in four cases of (hypo)dysfibrinogenemia: fibrinogen variants Hannover VI, Homburg VII, Stuttgart and Suhl. Thromb Haemost. 2003;89:637–46.

28. Dear A, Brennan SO, George PM. Familial hypodysfibrinogenaemia associated with second occurrence of gamma326 Cys-->Tyr mutation. Thromb Haemost. 2005;93:612–3.

29. Cheah CY, Brennan SO, Kennedy H, Januszewicz EH, Maxwell E, Burbury K. Fibrinogen Melbourne: a novel congenital hypodysfibrinogenemia caused by γ326Cys-Phe in the fibrinogen γ chain, presenting as massive splanchnic venous thrombosis. Blood Coagul Fibrinolysis. 2012;23:563–5.

30. Brennan SO, Laurie A, Smith M. Novel FGG variant (γ339C-->S) confirms importance of the γ326-339 disulphide bond for plasma expression of newly synthesised fibrinogen. Thromb Haemost. 2015;113:903–5.

31. Castaman G, Giacomelli SH, Biasoli C, Contino L, Radossi P. Risk of bleeding and thrombosis in inherited qualitative fibrinogen disorders. Eur J Haematol. 2019;103:379– 84.

32. Yonekawa O, Voskuilen M, Nieuwenhuizen W. Localization in the fibrinogen gamma- chain of a new site that is involved in the acceleration of the tissue-type plasminogen activator-catalysed activation of plasminogen. Biochem J. 1992;283:187–91.

33. McCormack PL. Tranexamic acid: a review of its use in the treatment of hyperfibrinolysis. Drugs. 2012;72:585–617.

34. Casini A, Blondon M, Lebreton A, Koegel J, Tintillier V, de Maistre E, et al. Natural history of patients with congenital dysfibrinogenemia. Blood. 2015;125:553–61.

35. Kumar R, Dawson J, Varga E, Canini JT, Monda KL, Dunn AL. Fibrinogen Columbus II: A novel c.1075G>T mutation in the FGG gene causing hypodysfibrinogenemia and thrombosis in an adolescent male. Pediatr Blood Cancer. 2019;66:e27832.

36. Goodman CS, Coulam CB, Jeyendran RS, Acosta VA, Roussev R. Which Thrombophilic Gene Mutations are Risk Factors for Recurrent Pregnancy Loss? Am J Reprod Immunol. 2006;56:230–6.

37. Brennan SO, Wyatt J, Medicina D, Callea F, George PM. Fibrinogen brescia: hepatic endoplasmic reticulum storage and hypofibrinogenemia because of a gamma284 Gly-->Arg mutation. Am J Pathol. 2000;157:189–96.

38. Brennan SO, Davis RL, Conard K, Savo A, Furuya KN. Novel fibrinogen mutation γ314Thr-->Pro (fibrinogen AI duPont) associated with hepatic fibrinogen storage disease and hypofibrinogenaemia. Liver Int. 2010;30:1541–7.

39. Asselta R, Robusto M, Braidotti P, Peyvandi F, Nastasio S, D’Antiga L, et al. Hepatic fibrinogen storage disease: identification of two novel mutations (p.Asp316Asn, fibrinogen Pisa and p.Gly366Ser, fibrinogen Beograd) impacting on the fibrinogen γ- module. J Thromb Haemost. 2015;13:1459–67.

40. Callea F, Giovannoni I, Sari S, Guldal E, Dalgic B, Akyol G, et al. Fibrinogen Gamma Chain Mutations Provoke Fibrinogen and Apolipoprotein B Plasma Deficiency and Liver Storage. Int J Mol Sci. 2017;18:2717.

41. Dib N, Quelin F, Ternisien C, Hanss M, Michalak S, De Mazancourt P, et al. Fibrinogen angers with a new deletion (gamma GVYYQ 346-350) causes hypofibrinogenemia with hepatic storage. J Thromb Haemost. 2007;5:1999–2005.

42. Burcu G, Bellacchio E, Sag E, Cebi AH, Saygin I, Bahadir A, et al. Structural Characteristics in the γ Chain Variants Associated with Fibrinogen Storage Disease Suggest the Underlying Pathogenic Mechanism. Int J Mol Sci. 2020;21.

43. Brennan SO, Maghzal G, Shneider BL, Gordon R, Magid MS, George PM. Novel fibrinogen gamma375 Arg-->Trp mutation (fibrinogen aguadilla) causes hepatic endoplasmic reticulum storage and hypofibrinogenemia. Hepatology. 2002;36:652–8.

44. Neerman‐Arbez M. To aggregate or not to aggregate. J Thromb Haemost. 2007;5:1997–8.

45. Hershko A, Ciechanover A. The ubiquitin system. Ann Rev Biochem. 1998;67:425– 79.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る