リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A novel variant fibrinogen, AαE11del, demonstrating the importance of AαE11 residue in thrombin binding」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A novel variant fibrinogen, AαE11del, demonstrating the importance of AαE11 residue in thrombin binding

Kaido, Takahiro Yoda, Masahiro Kamijo, Tomu Arai, Shinpei Yamauchi, Kazuyoshi Okumura, Nobuo 信州大学 DOI:34333754

2022.01.04

概要

Introduction: We identified a novel heterozygous AαE11del variant in a patient with congenital dysfibrinogenemia. This mutation is located in fibrinopeptide A (FpA). We analyzed the effect of AαE11del on the catalyzation of thrombin and batroxobin and simulated the stability of the complex structure between the FpA fragment (AαG6-V20) peptide and thrombin.

Materials and Methods: We performed fibrin polymerization and examined the kinetics of FpA release catalyzed by thrombin and batroxobin using purified plasma fibrinogen. To clarify the association between the AαE11 residue and thrombin, we calculated binding free energy using molecular dynamics simulation trajectories.

Results: Increasing the thrombin concentration improved release of FpA from the patient’s fibrinogen to approximately 90%, compared to the previous 50% of that of normal fibrinogen. Fibrin polymerization of variant fibrinogen also improved. In addition, greater impairment of variant FpA release from the patient’s fibrinogen was observed with thrombin than with batroxobin. Moreover, the calculated binding free energy showed that the FpA fragment– thrombin complex became unstable due to the missing AαE11 residue.

Conclusions: Our findings indicate that the AαE11 residue is involved in FpA release in thrombin catalyzation more than in batroxobin catalyzation, and that the AαE11 residue stabilizes FpA fragment–thrombin complex formation.

この論文で使われている画像

参考文献

1. Weisel JW. Fibrinogen and fibrin. Adv Protein Chem. United States; 2005;70:247–99.

2. Weisel JW, Litvinov RI. Fibrin Formation, Structure and Properties. Subcell Biochem. 2017;82:405–56.

3. Huang S, Cao Z, Chung DW, Davie EW. The role of betagamma and alphagamma complexes in the assembly of human fibrinogen. J Biol Chem. United States; 1996;271:27942–7.

4. Medved L, Weisel JW, Haemostasis F and FXS of SSC of IS on T and. Recommendations for nomenclature on fibrinogen and fibrin. J Thromb Haemost. 2009;7:355–9.

5. Blombäck B, Hessel B, Hogg D, Therkildsen L. A two-step fibrinogen-fibrin transition in blood coagulation. Nature. England; 1978;275:501–5.

6. Aronson DL. Comparison of the actions of thrombin and the thrombin-like venom enzymes ancrod and batroxobin. Thromb Haemost. Germany; 1976;36:9–13.

7. Rose T, Di Cera E. Three-dimensional modeling of thrombin-fibrinogen interaction. J Biol Chem. United States; 2002;277:18875–80.

8. Groupe d’etude sur l’hemostase et la thrombose. Human fibrinogen database release 50 [Internet]. 2020 [cited 2020 Aug 31]. Available from: https://site.geht.org/base-de-donnees- fibrinogene/.

9. Martin PD, Robertson W, Turk D, Huber R, Bode W, Edwards BF. The structure of residues 7-16 of the A alpha-chain of human fibrinogen bound to bovine thrombin at 2.3-A resolution. J Biol Chem. United States; 1992;267:7911–20.

10. Kaido T, Yoda M, Kamijo T, Taira C, Higuchi Y, Okumura N. Comparison of molecular structure and fibrin polymerization between two Bβ-chain N-terminal region fibrinogen variants, Bβp.G45C and Bβp.R74C. Int J Hematol. Japan; 2020;112:331–40.

11. Terasawa F, Okumura N, Kitano K, Hayashida N, Shimosaka M, Okazaki M, et al. Hypofibrinogenemia Associated With a Heterozygous Missense Mutation γ153Cys to Arg (Matsumoto IV): In Vitro Expression Demonstrates Defective Secretion of the Variant Fibrinogen. Blood. United States; 1999;94:4122–31.

12. Takebe M, Soe G, Kohno I, Sugo T, Matsuda M. Calcium ion-dependent monoclonal antibody against human fibrinogen: preparation, characterization, and application to fibrinogen purification. Thromb Haemost. Germany; 1995;73:662–7.

13. Gorkun O V, Veklich YI, Weisel JW, Lord ST. The conversion of fibrinogen to fibrin: recombinant fibrinogen typifies plasma fibrinogen. Blood. United States; 1997;89:4407–14.

14. Mihalyi E. Physicochemical studies of bovine fibrinogen. IV. Ultraviolet absorption and its relation to the structure of the molecule. Biochemistry. United States; 1968;7:208–23.

15. Ikeda M, Kobayashi T, Arai S, Mukai S, Takezawa Y, Terasawa F, et al. Recombinant γT305A fibrinogen indicates severely impaired fibrin polymerization due to the aberrant function of hole “A” and calcium binding sites. Thromb Res. United States; 2014;134:518– 25.

16. Martin PD, Malkowski MG, DiMaio J, Konishi Y, Ni F, Edwards BF. Bovine thrombin complexed with an uncleavable analog of residues 7-19 of fibrinogen A alpha: geometry of the catalytic triad and interactions of the P1’, P2’, and P3’ substrate residues. Biochemistry. United States; 1996;35:13030–9.

17. Sali A, Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. England; 1993;234:779–815.

18. Shen M-Y, Sali A. Statistical potential for assessment and prediction of protein structures. Protein Sci. 2006;15:2507–24.

19. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25.

20. Best RB, Zhu X, Shim J, Lopes PEM, Mittal J, Feig M, et al. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ(1) and χ(2) dihedral angles. J Chem Theory Comput. 2012;8:3257–73.

21. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79:926–35.

22. Pandey B, Grover A, Sharma P. Molecular dynamics simulations revealed structural differences among WRKY domain-DNA interaction in barley (Hordeum vulgare). BMC Genomics. 2018;19:132.

23. Yu H, Wang M, Xuan N, Shang Z, Wu J. Molecular dynamics simulation of the interactions between EHD1 EH domain and multiple peptides. J Zhejiang Univ Sci B. 2015;16:883–96.

24. Schrödinger L. The PyMOL Molecular Graphics System, Version 2.0. 2015.

25. Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, et al. Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res. United States; 2000;33:889–97.

26. Kumari R, Kumar R, Lynn A. g_mmpbsa—A GROMACS Tool for High-Throughput MM-PBSA Calculations. J Chem Inf Model. American Chemical Society; 2014;54:1951–62.

27. Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA. Electrostatics of nanosystems: Application to microtubules and the ribosome. Proc Natl Acad Sci. 2001;98:10037 LP – 10041.

28. Kehl M, Lottspeich F, Henschen A. Analysis of human fibrinopeptides by high- performance liquid chromatography. Hoppe Seylers Z Physiol Chem. Germany; 1981;362:1661–4.

29. Niwa K, Yaginuma A, Nakanishi M, Wada Y, Sugo T, Asakura S, et al. Fibrinogen Mitaka II: a hereditary dysfibrinogen with defective thrombin binding caused by an A alpha Glu-11 to Gly substitution. Blood. United States; 1993;82:3658–63.

30. Denninger MH, Finlayson JS, Reamer LA, Parquet-Gernez A, Goudemand M, Menache D. Congenital dysfibrinogenemia: fibrinogen Lille. Thromb Res. United States; 1978;13:453– 66.

31. Shapiro SE, Phillips E, Manning RA, Morse C V, Murden SL, Laffan MA, et al. Clinical phenotype, laboratory features and genotype of 35 patients with heritable dysfibrinogenaemia. Br J Haematol. England; 2013;160:220–7.

32. van Nispen JW, Hageman TC, Scheraga HA. Mechanism of action of thrombin on fibrinogen. The reaction of thrombin with fibrinogen-like peptides containing 11, 14, and 16 residues. Arch Biochem Biophys. United States; 1977;182:227–43.

33. Meinwald YC, Martinelli RA, van Nispen JW, Scheraga HA. Mechanism of action of thrombin on fibrinogen. Size of the A alpha fibrinogen-like peptide that contacts the active site of thrombin. Biochemistry. United States; 1980;19:3820–5.

34. Marsh HCJ, Meinwald YC, Thannhauser TW, Scheraga HA. Mechanism of action of thrombin on fibrinogen. Kinetic evidence for involvement of aspartic acid at position P10. Biochemistry. United States; 1983;22:4170–4.

35. Stubbs MT, Oschkinat H, Mayr I, Huber R, Angliker H, Stone SR, et al. The interaction of thrombin with fibrinogen. A structural basis for its specificity. Eur J Biochem. England; 1992;206:187–95.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る