リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Transcriptionally linked simultaneous overexpression of P450 genes for broad-spectrum herbicide resistance」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Transcriptionally linked simultaneous overexpression of P450 genes for broad-spectrum herbicide resistance

Suda, Hiroe Kubo, Tomomi Yoshimoto, Yusuke Tanaka, Keisuke Tanaka, Satoru Uchino, Akira Azuma, Satoshi Hattori, Makoto Yamaguchi, Takuya Miyashita, Masahiro Tominaga, Tohru Iwakami, Satoshi 京都大学 DOI:10.1093/plphys/kiad286

2023.08

概要

Broad-spectrum herbicide resistance (BSHR), often linked to weeds with metabolism-based herbicide resistance, poses a threat to food production. Past studies have revealed that overexpression of catalytically promiscuous enzymes explains BSHR in some weeds; however, the mechanism of BSHR expression remains poorly understood. Here, we investigated the molecular basis of high-level resistance to diclofop-methyl in BSHR late watergrass (Echinochloa phyllopogon) found in the United States, which cannot be solely explained by the overexpression of promiscuous cytochrome P450 monooxygenases CYP81A12/21. The BSHR late watergrass line rapidly produced 2 distinct hydroxylated diclofop acids, only 1 of which was the major metabolite produced by CYP81A12/21. RNA-seq and subsequent reverse transcription quantitative PCR (RT-qPCR)-based segregation screening identified the transcriptionally linked overexpression of a gene, CYP709C69, with CYP81A12/21 in the BSHR line. The gene conferred diclofop-methyl resistance in plants and produced another hydroxylated diclofop acid in yeast (Saccharomyces cerevisiae). Unlike CYP81A12/21, CYP709C69 showed no other herbicide-metabolizing function except for a presumed clomazone-activating function. The overexpression of the 3 herbicide-metabolizing genes was also identified in another BSHR late watergrass in Japan, suggesting a convergence of BSHR evolution at the molecular level. Synteny analysis of the P450 genes implied that they are located at mutually independent loci, which supports the idea that a single trans-element regulates the 3 genes. We propose that transcriptionally linked simultaneous overexpression of herbicide-metabolizing genes enhances and broadens the metabolic resistance in weeds. The convergence of the complex mechanism in BSHR late watergrass from 2 countries suggests that BSHR evolved through co-opting a conserved gene regulatory system in late watergrass.

この論文で使われている画像

参考文献

Bakkali Y, Ruiz-Santaella JP, Osuna MD, Wagner J, Fischer AJ, De

Prado R. Late watergrass (Echinochloa phyllopogon): mechanisms in­

volved in the resistance to fenoxaprop-p-ethyl. J Agric Food Chem.

2007:55(10):4052–4058. https://doi.org/10.1021/jf0624749

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for

Illumina sequence data. Bioinformatics 2014:30(15):2114–2120.

https://doi.org/10.1093/bioinformatics/btu170

Brazier-Hicks M, Howell A, Cohn J, Hawkes T, Hall G, Mcindoe E,

Edwards R. Chemically induced herbicide tolerance in rice by the

safener metcamifen is associated with a phased stress response. J

Exp Bot. 2020:71(1):411–421. https://doi.org/10.1093/jxb/erz438

Cai L, Comont D, MacGregor D, Lowe C, Beffa R, Neve P, Saski C. The

blackgrass genome reveals patterns of non-parallel evolution of poly­

genic herbicide resistance. New Phytol. 2023:237(5):1891–1907.

https://doi.org/10.1111/nph.18655

Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K,

Madden TL. BLAST+: architecture and applications. BMC Bioinformat­

ics 2009:10(1):421. https://doi.org/10.1186/1471-2105-10-421

Chayapakdee P. Molecular mechanism of quinclorac resistance in

multiple-Herbicide resistant Echinochloa phyllopogon [PhD thesis.].

[Tsukuba (Japan)] University of Tsukuba; 2019.

Chayapakdee P, Sunohara Y, Endo M, Yamaguchi T, Fan L, Uchino

A, Matsumoto H, Iwakami S. Quinclorac resistance in Echinochloa

phyllopogon is associated with reduced ethylene synthesis rather

than enhanced cyanide detoxification by beta-cyanoalanine

synthase. Pest Manag Sci. 2020:76(4):1195–1204. https://doi.org/10.

1002/ps.5660

Clough SJ, Bent AF. Floral dip: a simplified method for

Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant

J. 1998:16(6):735–743. https://doi.org/10.1046/j.1365-313x.1998.00343.x

Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR.

Genome-wide identification and testing of superior reference genes

for transcript normalization in Arabidopsis. Plant Physiol.

2005:139(1):5–17. https://doi.org/10.1104/pp.105.063743

Délye C. Unravelling the genetic bases of non-target-site-based resist­

ance (NTSR) to herbicides: a major challenge for weed science in

the forthcoming decade. Pest Manag Sci. 2013:69(2):176–187.

https://doi.org/10.1002/ps.3318

Dimaano NG, Iwakami S. Cytochrome P450-mediated herbicide me­

tabolism in plants: current understanding and prospects. Pest

Manag Sci. 2021:77(1):22–32. https://doi.org/10.1002/ps.6040

Dimaano NG, Yamaguchi T, Fukunishi K, Tominaga T, Iwakami S.

Functional characterization of cytochrome P450 CYP81A subfamily

to disclose the pattern of cross-resistance in Echinochloa phyllopogon.

Plant Mol Biol. 2020:102(4–5):403–416. https://doi.org/10.1007/

s11103-019-00954-3

Ding Y, Weckwerth PR, Poretsky E, Murphy KM, Sims J, Saldivar E,

Christensen SA, Char SN, Yang B, Tong AD, et al. Genetic elucida­

tion of interconnected antibiotic pathways mediating maize innate

immunity. Nat Plants. 2020:6(11):1375–1388. https://doi.org/10.

1038/s41477-020-00787-9

Endo M, Iwakami S, Toki S. Precision genome editing in plants via gene

targeting and subsequent break-induced single-strand annealing.

Plant Biotechnol J. 2021:19(3):563–574. https://doi.org/10.1111/pbi.

13485

Fang J, Zhang Y, Liu T, Yan B, Li J, Dong L. Target-site and metabolic

resistance mechanisms to penoxsulam in barnyardgrass (Echinochloa

crus-galli (L.) P. Beauv). J Agric Food Chem. 2019:67(29):8085–8095.

https://doi.org/10.1021/acs.jafc.9b01641

Fischer AJ, Ateh CM, Bayer DE, Hill JE. Herbicide-resistant Echinochloa

oryzoides and E. phyllopogon in California Oryza sativa fields. Weed

Sci. 2000:48(2):225–230. https://doi.org/10.1614/0043-1745(2000)

048[0225:HREOAE]2.0.CO;2

Gaines TA, Duke SO, Morran S, Rigon CAG, Tranel PJ, Kupper A,

Dayan FE. Mechanisms of evolved herbicide resistance. J Biol

Chem. 2020:295(30):10307–10330. https://doi.org/10.1074/jbc.

REV120.013572

Gilchrist CLM, Chooi Y-H. Clinker & clustermap.js: automatic

generation of gene cluster comparison figures. Bioinformatics

2021:37(16):2473–2475. https://doi.org/10.1093/bioinformatics/

btab007

Guo F, Iwakami S, Yamaguchi T, Uchino A, Sunohara Y, Matsumoto

H. Role of CYP81A cytochrome P450s in clomazone metabolism in

Echinochloa phyllopogon. Plant Sci. 2019:283:321–328. https://doi.

org/10.1016/j.plantsci.2019.02.010

Han H, Yu Q, Beffa R, Gonzalez S, Maiwald F, Wang J, Powles SB.

Cytochrome P450 CYP81A10v7 in Lolium rigidum confers metabolic

resistance to herbicides across at least five modes of action. Plant J.

2021:105(1):79–92. https://doi.org/10.1111/tpj.15040

Hofgen R, Willmitzer L. Storage of competent cells for Agrobacterium

transformation. Nucleic Acids Res. 1988:16(20):9877. https://doi.org/

10.1093/nar/16.20.9877

Ito H, Fukuda Y, Murata K, Kimura A. Transformation of intact yeast

cells treated with alkali cations. J Bacteriol. 1983:153(1):163–168.

https://doi.org/10.1128/jb.153.1.163-168.1983

Iwakami S, Endo M, Saika H, Okuno J, Nakamura N, Yokoyama M,

Watanabe H, Toki S, Uchino A, Inamura T. Cytochrome P450

CYP81A12 and CYP81A21 are associated with resistance to two acet­

olactate synthase inhibitors in Echinochloa phyllopogon. Plant

Physiol. 2014:165(2):618–629. https://doi.org/10.1104/pp.113.232843

Iwakami S, Kamidate Y, Yamaguchi T, Ishizaka M, Endo M, Suda H,

Nagai K, Sunohara Y, Toki S, Uchino A, et al. CYP81A P450s are

Downloaded from https://academic.oup.com/plphys/advance-article/doi/10.1093/plphys/kiad286/7167345 by Library of Research Reactor Institute, Kyoto University user on 04 August 2023

Supplemental Figure S5. Diclofop-methyl metabolizing

activity of CYP709Cs.

Supplemental Figure S6. Herbicide metabolizing activity

of CYP709C69.

Supplemental Figure S7. Herbicide sensitivity of late

watergrass (E. phyllopogon) in Japan.

Supplemental Figure S8. Annotation correction.

Supplemental Table S1. Primers used in this study.

Supplemental Table S2. The summary of herbicides used

for the functional characterizations of CYP709C69.

Suda et al.

P450 genes in broad-spectrum herbicide resistance

| 3029

Ruiz-Santaella JP, De Prado R, Wagner J, Fischer AJ, Gerhards R.

Resistance mechanisms to cyhalofop-butyl in a biotype of

Echinochloa phyllopogon (Stapf) Koss. from California. J Plant Dis

Prot. 2006:XX:95–100.

Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the com­

parative C(T) method. Nat Protoc. 2008:3(6):1101–1108. https://

doi.org/10.1038/nprot.2008.73

Shimabukuro RH, Walsh WC, Hoerauf RA. Metabolism and selectivity

of diclofop-methyl in wild oat and wheat. J Agric Food Chem.

1979:27(3):615–623. https://doi.org/10.1021/jf60223a008

Shimabukuro RH, Walsh WC, Jacobson A. Aryl-O-glucoside of diclo­

fop: a detoxication product in wheat shoots and wild oat cell suspen­

sion culture. J Agric Food Chem. 1987:35(3):393–397. https://doi.org/

10.1021/jf00075a027

Tanaka FS, Hoffer BL, Shimabukuro RH, Wien RG, Walsh WC.

Identification of the isomeric hydroxylated metabolites of methyl

2-[4-(2, 4-dichlorophenoxy) phenoxy] propanoate (diclofop-methyl)

in wheat. J Agric Food Chem. 1990:38(2):559–565. https://doi.org/10.

1021/jf00092a049

Tanigaki S, Uchino A, Okawa S, Miura C, Hamamura K, Matsuo M,

Yoshino N, Ueno N, Toyama Y, Fukumi N, et al. Gene expression

shapes the patterns of parallel evolution of herbicide resistance in

the agricultural weed Monochoria vaginalis. New Phytol.

2021:232(2):928–940. https://doi.org/10.1111/nph.17624

Toki S. Rapid and efficient Agrobacterium-mediated transformation in

rice. Plant Mol Biol Rep. 1997:15(1):16–21. https://doi.org/10.1007/

BF02772109

Tsuji R, Fischer AJ, Yoshino M, Roel A, Hill JE, Yamasue Y.

Herbicide-resistant late watergrass (Echinochloa phyllopogon): similarity

in morphological and amplified fragment length polymorphism traits.

Weed Sci. 2003:51(5):740–747. https://doi.org/10.1614/P2002-143

Van Etten M, Lee KM, Chang SM, Baucom RS. Parallel and nonparallel

genomic responses contribute to herbicide resistance in Ipomoea

purpurea, a common agricultural weed. PLoS Genet. 2020:16(2):

e1008593. https://doi.org/10.1371/journal.pgen.1008593

Wenger J, Niderman T, Mathew C. Acetyl-CoA carboxylase inhibitors.

In: Krämer W Schirmer U Jeschke P, Matthias W, editors. Modern

crop protection compounds, second, revised and enlarged edition.

Weinheim, Germany: Wiley-VCH; 2012. p. 447–477.

Xu W, Di C, Zhou S, Liu J, Li L, Liu F, Yang X, Ling Y, Su Z. Rice tran­

scriptome analysis to identify possible herbicide quinclorac detoxifi­

cation genes. Front Genet. 2015:6:306. https://doi.org/10.3389/fgene.

2015.00306

Yamasue Y. Strategy of Echinochloa oryzicola vasing. For survival in

flooded rice. Weed Biol Manag. 2001:1(1):28–36. https://doi.org/10.

1046/j.1445-6664.2001.00008.x

Yan B, Zhang Y, Li J, Fang J, Liu T, Dong L. Transcriptome profiling to

identify cytochrome P450 genes involved in penoxsulam resistance in

Echinochloa glabrescens. Pestic Biochem Physiol. 2019:158:112–120.

https://doi.org/10.1016/j.pestbp.2019.04.017

Yasuor H, Tenbrook PL, Tjeerdema RS, Fischer AJ. Responses to clo­

mazone and 5-ketoclomazone by Echinochloa phyllopogon resistant

to multiple herbicides in Californian rice fields. Pest Manag Sci.

2008:64:1031–1039.

Yasuor H, Zou W, Tolstikov VV, Tjeerdema RS, Fischer AJ.

Differential oxidative metabolism and 5-ketoclomazone accumula­

tion are involved in Echinochloa phyllopogon resistance to cloma­

zone. Plant Physiol. 2010:153:319–326.

Ye CY, Wu D, Mao L, Jia L, Qiu J, Lao S, Chen M, Jiang B, Tang W,

Peng Q, et al. The genomes of the allohexaploid Echinochloa crusgalli and its progenitors provide insights into polyploidization-driven

adaptation. Mol Plant. 2020:13(9):1298–1310. https://doi.org/10.

1016/j.molp.2020.07.001

Yu Q, Powles S. Metabolism-based herbicide resistance and crossresistance in crop weeds: a threat to herbicide sustainability and glo­

bal crop production. Plant Physiol. 2014:166(3):1106–1118. https://

doi.org/10.1104/pp.114.242750

Downloaded from https://academic.oup.com/plphys/advance-article/doi/10.1093/plphys/kiad286/7167345 by Library of Research Reactor Institute, Kyoto University user on 04 August 2023

involved in concomitant cross-resistance to acetolactate synthase

and acetyl-CoA carboxylase herbicides in Echinochloa phyllopogon.

New Phytol. 2019:221(4):2112–2122. https://doi.org/10.1111/nph.

15552

Iwakami S, Uchino A, Kataoka Y, Shibaike H, Watanabe H, Inamura

T. Cytochrome P450 genes induced by bispyribac-sodium treatment

in a multiple-herbicide-resistant biotype of Echinochloa phyllopogon.

Pest Manag Sci. 2014:70(4):549–558. https://doi.org/10.1002/ps.3572

Iwakami S, Uchino A, Watanabe H, Yamasue Y, Inamura T. Isolation

and expression of genes for acetolactate synthase and acetyl-CoA

carboxylase in Echinochloa phyllopogon, a polyploid weed species.

Pest Manag Sci. 2012:68(7):1098–1106. https://doi.org/10.1002/ps.

3287

Kandel S, Morant M, Benveniste I, Blee E, Werck-Reichhart D, Pinot

F. Cloning, functional expression, and characterization of CYP709C1,

the first sub-terminal hydroxylase of long chain fatty acid in plants.

Induction by chemicals and methyl jasmonate. J Biol Chem.

2005:280(43):35881–35889. https://doi.org/10.1074/jbc.M500918200

Katoh K, Standley DM. MAFFT Multiple sequence alignment software

version 7: improvements in performance and usability. Mol Biol Evol.

2013:30(4):772–780. https://doi.org/10.1093/molbev/mst010

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular

evolutionary genetics analysis across computing platforms. Mol

Biol Evol. 2018:35(6):1547–1549. https://doi.org/10.1093/molbev/

msy096

Li B, Dewey CN. RSEM: accurate transcript quantification from RNAseq data with or without a reference genome. BMC Bioinformatics

2011:12(1):323. https://doi.org/10.1186/1471-2105-12-323

McFadden JJ, Frear DS, Mansager ER. Aryl hydroxylation of diclofop

by a cytochrome P450 dependent monooxygenase from wheat.

Pestic Biochem Physiol. 1989:34(1):92–100. https://doi.org/10.1016/

0048-3575(89)90145-4

Motohashi K. A simple and efficient seamless DNA cloning method

using SLiCE from Escherichia coli laboratory strains and its application

to SLiP site-directed mutagenesis. BMC Biotechnol. 2015:15(1):47.

https://doi.org/10.1186/s12896-015-0162-8

Murashige T, Skoog F. A revised medium for rapid growth and bio as­

says with tobacco tissue cultures. Physiol Plant. 1962:15(3):473–497.

https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Nandula VK, Riechers DE, Ferhatoglu Y, Barrett M, Duke SO, Dayan

FE, Goldberg-Cavalleri A, Tétard-Jones C, Wortley DJ,

Onkokesung N, et al. Herbicide metabolism: crop selectivity, bioac­

tivation, weed resistance, and regulation. Weed Sci. 2019:67(2):

149–175. https://doi.org/10.1017/wsc.2018.88

Owen WJ. Herbicide metabolism as a basis for selectivity. In: Roberts T,

editors. Metabolsim of agrachemicals in plants. Chichester: John

Wiley & Sons Ltd; 2000. p. 211–258.

Pan L, Guo Q, Wang J, Shi L, Yang X, Zhou Y, Yu Q, Bai L. CYP81A68

Confers metabolic resistance to ALS and ACCase-inhibiting herbi­

cides and its epigenetic regulation in Echinochloa crus-galli. J

Hazard Mater. 2022:428:128225. https://doi.org/10.1016/j.jhazmat.

2022.128225

Pompon D, Louerat B, Bronine A, Urban P. Yeast expression of animal

and plant P450s in optimized redox environments. Methods Enzymol.

1996:272:51–64. https://doi.org/10.1016/S0076-6879(96)72008-6

Powles SB, Yu Q. Evolution in action: plants resistant to herbicides.

Annu Rev Plant Biol. 2010:61(1):317–347. https://doi.org/10.1146/

annurev-arplant-042809-112119

R Core Team. R: a language and environment for statistical computing.

Vienna, Austria: R Foundation for Statistical Computing; 2022.

Ritz C, Baty F, Streibig JC, Gerhard D. Dose–response analysis using R.

PLoS One 2015:10(12):e0146021. https://doi.org/10.1371/journal.

pone.0146021

Robinson MD, McCarthy DJ, Smyth GK. Edger: a bioconductor

package for differential expression analysis of digital gene expression

data. Bioinformatics 2010:26(1):139–140. https://doi.org/10.1093/

bioinformatics/btp616

PLANT PHYSIOLOGY 2023: 192; 3017–3029

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る