リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「The interferon stimulated gene-encoded protein HELZ2 inhibits human LINE-1 retrotransposition and LINE-1 RNA-mediated type I interferon induction」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

The interferon stimulated gene-encoded protein HELZ2 inhibits human LINE-1 retrotransposition and LINE-1 RNA-mediated type I interferon induction

Luqman-Fatah, Ahmad Watanabe, Yuzo Uno, Kazuko Ishikawa, Fuyuki Moran, John V. Miyoshi, Tomoichiro 京都大学 DOI:10.1038/s41467-022-35757-6

2023.01.13

概要

Some interferon stimulated genes (ISGs) encode proteins that inhibit LINE-1 (L1) retrotransposition. Here, we use immunoprecipitation followed by liquid chromatography-tandem mass spectrometry to identify proteins that associate with the L1 ORF1-encoded protein (ORF1p) in ribonucleoprotein particles. Three ISG proteins that interact with ORF1p inhibit retrotransposition: HECT and RLD domain containing E3 ubiquitin-protein ligase 5 (HERC5); 2′−5′-oligoadenylate synthetase-like (OASL); and helicase with zinc finger 2 (HELZ2). HERC5 destabilizes ORF1p, but does not affect its cellular localization. OASL impairs ORF1p cytoplasmic foci formation. HELZ2 recognizes sequences and/or structures within the L1 5′UTR to reduce L1 RNA, ORF1p, and ORF1p cytoplasmic foci levels. Overexpression of WT or reverse transcriptase-deficient L1s lead to a modest induction of IFN-α expression, which is abrogated upon HELZ2 overexpression. Notably, IFN-α expression is enhanced upon overexpression of an ORF1p RNA binding mutant, suggesting ORF1p binding might protect L1 RNA from “triggering” IFN-α induction. Thus, ISG proteins can inhibit retrotransposition by different mechanisms.

この論文で使われている画像

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

9.

Statistics and reproducibility

All western blots and immunofluorescence were independently replicated three times to ensure reproducibility. The RNase assay experiment in Supplementary Fig. 5c, d was performed twice with similar

results observed. The rest of the experimental replicate numbers are

indicated in the figure legends. One-way ANOVA followed by

Bonferroni-Holm post hoc tests were performed for all statistical

analyses unless stated otherwise in the figure legends. All analyses

were performed using online website statistical calculator ASTATSA

2016 (https://www.astatsa.com/) or GraphPad Prism version 9.0.0 for

Nature Communications | (2023)14:203

10.

11.

12.

Lander, E. S. et al. Initial sequencing and analysis of the human

genome. Nature 409, 860–921 (2001).

Grimaldi, G., Skowronski, J. & Singer, M. F. Defining the beginning

and end of KpnI family segments. EMBO J. 3, 1753–1759 (1984).

Ostertag, E. M. & Kazazian, H. H. Twin priming: a proposed

mechanism for the creation of inversions in L1 retrotransposition.

Genome Res. 11, 2059–2065 (2001).

Richardson, S. R. et al. The influence of LINE-1 and SINE retrotransposons on mammalian genomes. Microbiol. Spectr. 3,

MDNA3-0061-2014 (2015).

Sassaman, D. M. et al. Many human L1 elements are capable of

retrotransposition. Nat. Genet. 16, 37–43 (1997).

Brouha, B. et al. Hot L1s account for the bulk of retrotransposition

in the human population. Proc. Natl Acad. Sci. USA 100,

5280–5285 (2003).

Beck, C. R. et al. LINE-1 retrotransposition activity in human genomes. Cell 141, 1159–1170 (2010).

Chuang, N. T. et al. Mutagenesis of human genomes by endogenous mobile elements on a population scale. Genome Res. 31,

2225–2235 (2021).

Scott, A. F. et al. Origin of the human L1 elements: proposed

progenitor genes deduced from a consensus DNA sequence.

Genomics 1, 113–125 (1987).

Dombroski, B. A., Mathias, S. L., Nanthakumar, E., Scott, A. F. &

Kazazian, H. H. Isolation of an active human transposable element.

Science 254, 1805–1808 (1991).

Martin, S. L. & Bushman, F. D. Nucleic acid Chaperone activity of

the ORF1 protein from the mouse LINE-1 retrotransposon. Mol.

Cell. Biol. 21, 467–475 (2001).

Khazina, E. et al. Trimeric structure and flexibility of the L1ORF1

protein in human L1 retrotransposition. Nat. Struct. Mol. Biol. 18,

1006–1014 (2011).

22

Article

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Hohjoh, H. & Singer, M. F. Cytoplasmic ribonucleoprotein complexes containing human LINE-1 protein and RNA. EMBO J. 15,

630–639 (1996).

Mathias, S. L., Scott, A. F., Kazazian, H. H., Boeke, J. D. & Gabriel, A.

Reverse transcriptase encoded by a human transposable element.

Science 254, 1808–1810 (1991).

́ F., Marañón, C., Olivares, M., Alonso, C. & López, M. C.

Martın,

Characterization of a non-long terminal repeat retrotransposon

cDNA (L1Tc) from trypanosoma cruzi: homology of the first ORF

with the Ape aamily of DNA repair enzymes. J. Mol. Biol. 247,

49–59 (1995).

Feng, Q., Moran, J. V., Kazazian, H. H. & Boeke, J. D. Human L1

retrotransposon encodes a conserved endonuclease required for

retrotransposition. Cell 87, 905–916 (1996).

Moran, J. V. et al. High frequency retrotransposition in cultured

mammalian cells. Cell 87, 917–927 (1996).

Luan, D. D., Korman, M. H., Jakubczak, J. L. & Eickbush, T. H.

Reverse transcription of R2Bm RNA is primed by a nick at the

chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 72, 595–605 (1993).

Cost, G. J., Feng, Q., Jacquier, A. & Boeke, J. D. Human L1 element

target-primed reverse transcription in vitro. EMBO J. 21,

5899–5910 (2002).

Flasch, D. A. et al. Genome-wide de novo L1 retrotransposition

connects endonuclease activity with replication. Cell 177,

837–851.e28 (2019).

Swergold, G. D. Identification, characterization, and cell specificity of a human LINE-1 promoter. Mol. Cell. Biol. 10,

6718–6729 (1990).

Athanikar, J. N., Badge, R. M. & Moran, J. V. A YY1-binding site is

required for accurate human LINE-1 transcription initiation.

Nucleic Acids Res. 32, 3846–3855 (2004).

Olovnikov, I. A. et al. Key role of the internal 5′-UTR segment in the

transcription activity of the human L1 retrotransposon. Mol. Biol.

41, 453–458 (2007).

Esnault, C., Maestre, J. & Heidmann, T. Human LINE retrotransposons generate processed pseudogenes. Nat. Genet. 24,

363–367 (2000).

Wei, W. et al. Human L1 retrotransposition: cis preference

versus trans complementation. Mol. Cell. Biol. 21,

1429–1439 (2001).

Kulpa, D. A. & Moran, J. V. Ribonucleoprotein particle formation is

necessary but not sufficient for LINE-1 retrotransposition. Hum.

Mol. Genet. 14, 3237–3248 (2005).

Doucet, A. J., Wilusz, J. E., Miyoshi, T., Liu, Y. & Moran, J. V. A 3′

Poly(A) tract is required for LINE-1 retrotransposition. Mol. Cell 60,

728–741 (2015).

Kubo, S. et al. L1 retrotransposition in nondividing and primary

human somatic cells. Proc. Natl Acad. Sci. USA 103,

8036–8041 (2006).

Mita, P. et al. LINE-1 protein localization and functional dynamics

during the cell cycle. eLife 7, e30058 (2018).

Cost, G. J. & Boeke, J. D. Targeting of human retrotransposon

integration is directed by the specificity of the L1 endonuclease for

regions of unusual DNA structure. Biochemistry 37,

18081–18093 (1998).

Morrish, T. A. et al. DNA repair mediated by endonucleaseindependent LINE-1 retrotransposition. Nat. Genet. 31,

159–165 (2002).

Kulpa, D. A. & Moran, J. V. Cis-preferential LINE-1 reverse transcriptase activity in ribonucleoprotein particles. Nat. Struct. Mol.

Biol. 13, 655–660 (2006).

Gilbert, N., Lutz-Prigge, S. & Moran, J. V. Genomic deletions created upon LINE-1 retrotransposition. Cell 110, 315–325 (2002).

Nature Communications | (2023)14:203

https://doi.org/10.1038/s41467-022-35757-6

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

Gilbert, N., Lutz, S., Morrish, T. A. & Moran, J. V. Multiple fates of L1

retrotransposition intermediates in cultured human cells. Mol.

Cell. Biol. 25, 7780–7795 (2005).

Piskareva, O. & Schmatchenko, V. DNA polymerization by the

reverse transcriptase of the human L1 retrotransposon on its own

template in vitro. FEBS Lett. 580, 661–668 (2006).

Kazazian, H. H. et al. Haemophilia A resulting from de novo

insertion of L1 sequences represents a novel mechanism for

mutation in man. Nature 332, 164–166 (1988).

Beck, C. R., Garcia-Perez, J. L., Badge, R. M. & Moran, J. V. LINE-1

elements in structural variation and disease. Annu. Rev. Genomics

Hum. Genet. 12, 187–215 (2011).

Hancks, D. C. & Kazazian, H. H. Roles for retrotransposon insertions in human disease. Mob. DNA 7, 9 (2016).

Kazazian, H. H. & Moran, J. V. Mobile DNA in health and disease. N.

Engl. J. Med. 377, 361–370 (2017).

Mavragani, C. P. et al. Expression of long interspersed nuclear

element 1 retroelements and induction of type I interferon in

patients with systemic autoimmune disease. Arthritis Rheumatol.

Hoboken NJ 68, 2686–2696 (2016).

Li, P. et al. Aicardi–Goutières syndrome protein TREX1 suppresses

L1 and maintains genome integrity through exonucleaseindependent ORF1p depletion. Nucleic Acids Res. 45,

4619–4631 (2017).

Zhao, K. et al. LINE1 contributes to autoimmunity through both

RIG-I- and MDA5-mediated RNA sensing pathways. J. Autoimmun.

90, 105–115 (2018).

Cecco, M. D. et al. LINE-1 derepression in senescent cells triggers

interferon and inflammaging. Nature 566, 73–78 (2019).

Simon, M. et al. LINE1 derepression in aged wild-type and SIRT6deficient mice drives inflammation. Cell Metab. 29,

871–885.e5 (2019).

Ardeljan, D. et al. Cell fitness screens reveal a conflict between

LINE-1 retrotransposition and DNA replication. Nat. Struct. Mol.

Biol. 27, 168–178 (2020).

Tunbak, H. et al. The HUSH complex is a gatekeeper of type I

interferon through epigenetic regulation of LINE-1s. Nat. Commun.

11, 5387 (2020).

Anderson, P. & Kedersha, N. Stressful initiations. J. Cell Sci. 115,

3227–3234 (2002).

Goodier, J. L., Zhang, L., Vetter, M. R. & Kazazian, H. H. LINE-1 ORF1

protein localizes in stress granules with other RNA-binding

proteins, including components of RNA interference RNAinduced silencing complex. Mol. Cell. Biol. 27, 6469–6483

(2007).

Doucet, A. J. et al. Characterization of LINE-1 ribonucleoprotein

particles. PLoS Genet. 6, e1001150 (2010).

Moldovan, J. B. & Moran, J. V. The zinc-finger antiviral protein ZAP

inhibits LINE and Alu retrotransposition. PLOS Genet. 11,

e1005121 (2015).

Kedersha, N., Ivanov, P. & Anderson, P. Stress granules and cell

signaling: more than just a passing phase? Trends Biochem. Sci.

38, 494–506 (2013).

Protter, D. S. W. & Parker, R. Principles and properties of stress

granules. Trends Cell Biol. 26, 668–679 (2016).

Goodier, J. L., Cheung, L. E. & Kazazian, H. H. MOV10 RNA helicase

is a potent inhibitor of retrotransposition in cells. PLoS Genet. 8,

e1002941 (2012).

Goodier, J. L., Pereira, G. C., Cheung, L. E., Rose, R. J. & Kazazian, H.

H. The broad-spectrum antiviral protein ZAP restricts human retrotransposition. PLoS Genet. 11, e1005252 (2015).

Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and

integrative analysis of large gene lists using DAVID bioinformatics

resources. Nat. Protoc. 4, 44–57 (2009).

23

Article

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

Sherman, B. T. et al. DAVID: a web server for functional enrichment

analysis and functional annotation of gene lists (2021 update).

Nucleic Acids Res. 50, W216–W221 (2022).

Subramanian, A. et al. Gene set enrichment analysis: a knowledgebased approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

Kammerer, R. A. et al. A conserved trimerization motif controls the

topology of short coiled coils. Proc. Natl Acad. Sci. USA 102,

13891–13896 (2005).

Adney, E. M. et al. Comprehensive scanning mutagenesis of

human retrotransposon LINE-1 identifies motifs essential for

function. Genetics 213, 1401–1414 (2019).

Wei, W., Morrish, T. A., Alisch, R. S. & Moran, J. V. A transient assay

reveals that cultured human cells can accommodate multiple

LINE-1 retrotransposition events. Anal. Biochem. 284,

435–438 (2000).

Kopera, H. C. et al. LINE-1 cultured cell retrotransposition assay.

Methods Mol. Biol. Clifton NJ 1400, 139–156 (2016).

Tourrière, H. et al. The RasGAP-associated endoribonuclease

G3BP assembles stress granules. J. Cell Biol. 160, 823–831 (2003).

Briggs, E. M. et al. RIP-seq reveals LINE-1 ORF1p association with

p-body enriched mRNAs. Mob. DNA 12, 5 (2021).

Dai, L., Taylor, M. S., O’Donnell, K. A. & Boeke, J. D. Poly(A)

binding protein C1 is essential for efficient L1 retrotransposition

and affects L1 RNP formation. Mol. Cell. Biol. 32,

4323–4336 (2012).

Taylor, M. S. et al. Affinity proteomics reveals human host factors

implicated in discrete stages of LINE-1 retrotransposition. Cell 155,

1034–1048 (2013).

Tristán-Ramos, P. et al. The tumor suppressor microRNA let-7

inhibits human LINE-1 retrotransposition. Nat. Commun. 11,

5712 (2020).

Yu, Q. et al. Type I interferon controls propagation of long

interspersed element-1. J. Biol. Chem. 290, 10191–10199

(2015).

Arjan-Odedra, S., Swanson, C. M., Sherer, N. M., Wolinsky, S. M. &

Malim, M. H. Endogenous MOV10 inhibits the retrotransposition of

endogenous retroelements but not the replication of exogenous

retroviruses. Retrovirology 9, 53 (2012).

Li, X. et al. The MOV10 helicase inhibits LINE-1 mobility. J. Biol.

Chem. 288, 21148–21160 (2013).

Orecchini, E. et al. ADAR1 restricts LINE-1 retrotransposition.

Nucleic Acids Res. 45, 155–168 (2017).

Esnault, C. et al. APOBEC3G cytidine deaminase inhibits retrotransposition of endogenous retroviruses. Nature 433,

430–433 (2005).

Bogerd, H. P. et al. Cellular inhibitors of long interspersed element

1 and Alu retrotransposition. Proc. Natl Acad. Sci. USA 103,

8780–8785 (2006).

Muckenfuss, H. et al. APOBEC3 proteins inhibit human LINE-1

retrotransposition. J. Biol. Chem. 281, 22161–22172 (2006).

Hulme, A. E., Bogerd, H. P., Cullen, B. R. & Moran, J. V. Selective

inhibition of Alu retrotransposition by APOBEC3G. Gene 390,

199–205 (2007).

Lovšin, N. & Peterlin, B. M. APOBEC3 proteins inhibit LINE-1 retrotransposition in the absence of ORF1p binding. Ann. N. Y. Acad.

Sci. 1178, 268–275 (2009).

Horn, A. V. et al. Human LINE-1 restriction by APOBEC3C is deaminase independent and mediated by an ORF1p interaction that

affects LINE reverse transcriptase activity. Nucleic Acids Res. 42,

396–416 (2014).

Richardson, S. R., Narvaiza, I., Planegger, R. A., Weitzman, M. D. &

Moran, J. V. APOBEC3A deaminates transiently exposed singlestrand DNA during LINE-1 retrotransposition. eLife 3,

e02008 (2014).

Nature Communications | (2023)14:203

https://doi.org/10.1038/s41467-022-35757-6

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

Feng, Y., Goubran, M. H., Follack, T. B. & Chelico, L. Deaminationindependent restriction of LINE-1 retrotransposition by APOBEC3H. Sci. Rep. 7, 10881 (2017).

Stetson, D. B., Ko, J. S., Heidmann, T. & Medzhitov, R. Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell 134,

587–598 (2008).

Thomas, C. A. et al. Modeling of TREX1-dependent autoimmune

disease using human stem cells highlights L1 accumulation as a

source of neuroinflammation. Cell Stem Cell 21, 319–331.e8 (2017).

Zhao, K. et al. Modulation of LINE-1 and Alu/SVA retrotransposition

by Aicardi-Goutières syndrome-related SAMHD1. Cell Rep. 4,

1108–1115 (2013).

Hu, S. et al. SAMHD1 inhibits LINE-1 retrotransposition by promoting stress granule formation. PLoS Genet. 11, e1005367 (2015).

White, T. E. et al. Modulation of LINE-1 retrotransposition by a

human SAMHD1 polymorphism. Virol. Rep. 6, 53–60 (2016).

Benitez‐Guijarro, M. et al. RNase H2, mutated in Aicardi‐Goutières

syndrome, promotes LINE‐1 retrotransposition. EMBO J. 37,

e98506 (2018).

Choi, J., Hwang, S.-Y. & Ahn, K. Interplay between RNASEH2 and

MOV10 controls LINE-1 retrotransposition. Nucleic Acids Res. 46,

1912–1926 (2018).

Zhang, A. et al. RNase L restricts the mobility of engineered retrotransposons in cultured human cells. Nucleic Acids Res. 42,

3803–3820 (2014).

Rusinova, I. et al. INTERFEROME v2.0: an updated database of

annotated interferon-regulated genes. Nucleic Acids Res. 41,

D1040–D1046 (2013).

Szklarczyk, D. et al. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery

in genome-wide experimental datasets. Nucleic Acids Res. 47,

D607–D613 (2019).

Warkocki, Z. et al. Uridylation by TUT4/7 restricts retrotransposition of human LINE-1s. Cell 174, 1537–1548.e29 (2018).

Amblar, M., Barbas, A., Fialho, A. M. & Arraiano, C. M. Characterization of the functional domains of Escherichia coli RNase II. J.

Mol. Biol. 360, 921–933 (2006).

Frazão, C. et al. Unravelling the dynamics of RNA degradation by

ribonuclease II and its RNA-bound complex. Nature 443,

110–114 (2006).

Barbas, A. et al. New insights into the mechanism of RNA degradation by ribonuclease II: identification of the residue responsible

for setting the RNase II end product. J. Biol. Chem. 283,

13070–13076 (2008).

Walker, J. E., Saraste, M., Runswick, M. J. & Gay, N. J. Distantly

related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a

common nucleotide binding fold. EMBO J. 1, 945–951 (1982).

Finn, R. D. et al. Pfam: the protein families database. Nucleic Acids

Res. 42, D222–D230 (2014).

Miller, J. M. & Enemark, E. J. Fundamental characteristics of AAA+

protein family structure and function. Archaea 2016,

9294307 (2016).

Dewannieux, M., Esnault, C. & Heidmann, T. LINE-mediated retrotransposition of marked Alu sequences. Nat. Genet. 35,

41–48 (2003).

Miyoshi, T., Makino, T. & Moran, J. V. Poly(ADP-Ribose) polymerase

2 recruits replication protein A to sites of LINE-1 integration to

facilitate retrotransposition. Mol. Cell 75, 1286–1298.e12 (2019).

Chu, L.-Y. et al. Structural insights into RNA unwinding and

degradation by RNase R. Nucleic Acids Res. 45,

12015–12024 (2017).

Reis, F. P., Pobre, V., Silva, I. J., Malecki, M. & Arraiano, C. M. The

RNase II/RNB family of exoribonucleases: putting the ‘Dis’ in disease. WIREs RNA 4, 607–615 (2013).

24

Article

100. Awano, N. et al. Escherichia coli RNase R has dual activities, helicase and RNase. J. Bacteriol. 192, 1344–1352 (2010).

101. Hossain, S. T., Malhotra, A. & Deutscher, M. P. The helicase activity

of ribonuclease R is essential for efficient nuclease activity. J. Biol.

Chem. 290, 15697–15706 (2015).

102. Naufer, M. N. et al. L1 retrotransposition requires rapid ORF1p oligomerization, a novel coiled coil-dependent property conserved

despite extensive remodeling. Nucleic Acids Res. 44,

281–293 (2016).

103. Bourc’his, D. & Bestor, T. H. Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature 431, 96–99 (2004).

104. Coufal, N. G. et al. L1 retrotransposition in human neural progenitor cells. Nature 460, 1127–1131 (2009).

105. Ewing, A. D. et al. Nanopore sequencing enables comprehensive

transposable element epigenomic profiling. Mol. Cell 80,

915–928.e5 (2020).

106. Jacobs, F. M. J. et al. An evolutionary arms race between KRAB

zinc-finger genes ZNF91/93 and SVA/L1 retrotransposons. Nature

516, 242–245 (2014).

107. Larson, P. A. et al. Spliced integrated retrotransposed element

(SpIRE) formation in the human genome. PLOS Biol. 16,

e2003067 (2018).

108. Surapureddi, S. et al. Identification of a transcriptionally active

peroxisome proliferator-activated receptor α-interacting cofactor

complex in rat liver and characterization of PRIC285 as a coactivator. Proc. Natl Acad. Sci. USA 99, 11836–11841 (2002).

109. Tomaru, T. et al. Isolation and characterization of a transcriptional

cofactor and its novel isoform that bind the deoxyribonucleic acidbinding domain of peroxisome proliferator-activated receptor-γ.

Endocrinology 147, 377–388 (2006).

110. Tchenio, T., Casella, J. F. & Heidmann, T. Members of the SRY

family regulate the human LINE retrotransposons. Nucleic Acids

Res. 28, 411–415 (2000).

111. Yang, N., Zhang, L., Zhang, Y. & Kazazian, H. H. An important role

for RUNX3 in human L1 transcription and retrotransposition.

Nucleic Acids Res. 31, 4929–4940 (2003).

112. Sun, X. et al. Transcription factor profiling reveals molecular

choreography and key regulators of human retrotransposon

expression. Proc. Natl Acad. Sci. USA 115, E5526–E5535 (2018).

113. Usdin, K. & Furano, A. V. The structure of the guanine-rich polypurine:polypyrimidine sequence at the right end of the rat L1

(LINE) element. J. Biol. Chem. 264, 15681–15687 (1989).

114. Crow, M. K. Long interspersed nuclear elements (LINE-1): potential

triggers of systemic autoimmune disease. Autoimmunity 43,

7–16 (2010).

115. Volkman, H. E. & Stetson, D. B. The enemy within: endogenous

retroelements and autoimmune disease. Nat. Immunol. 15,

415–422 (2014).

116. Wang, T., Wei, J. J., Sabatini, D. M. & Lander, E. S. Genetic screens

in human cells using the CRISPR-Cas9 system. Science 343,

80–84 (2014).

117. Kopera, H. C., Moldovan, J. B., Morrish, T. A., Garcia-Perez, J. L. &

Moran, J. V. Similarities between long interspersed element-1

(LINE-1) reverse transcriptase and telomerase. Proc. Natl Acad. Sci.

USA 108, 20345–20350 (2011).

118. Kowarz, E., Löscher, D. & Marschalek, R. Optimized Sleeping

Beauty transposons rapidly generate stable transgenic cell lines.

Biotechnol. J. 10, 647–653 (2015).

119. Mátés, L. et al. Molecular evolution of a novel hyperactive Sleeping Beauty transposase enables robust stable gene transfer in

vertebrates. Nat. Genet. 41, 753–761 (2009).

Nature Communications | (2023)14:203

https://doi.org/10.1038/s41467-022-35757-6

120. Ostertag, E. M., Luning Prak, E. T., DeBerardinis, R. J., Moran,

J. V. & Kazazian, H. H. Determination of L1 retrotransposition

kinetics in cultured cells. Nucleic Acids Res. 28, 1418–1423

(2000).

121. Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for

researchers, educators, and developers. Protein Sci. 30,

70–82 (2021).

122. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to

ImageJ: 25 years of image analysis. Nat. Methods 9,

671–675 (2012).

Acknowledgements

We thank K. H. Burns, D. Ardeljan, T. Heidmann, M. T. Hayashi, D.

Trono, and Z. Izsvak for valuable reagents, all Ishikawa lab members

(especially Theventhiran, T. Makino, K. Sugino, and K. Nishimori), K.

Takahara, M. Miyoshi, and J. B. Moldovan for helpful discussions.

A.L.-F. was supported by JASSO and MEXT Scholarships. F.I. was

supported by JSPS KAKENHI (Grant Number JP19H05655). J.V.M.

was supported, in part, by NIH grant GM060518. T.M. was supported by JSPS KAKENHI (Grant Number JP18K06180 and 21K19219),

ISHIZUE 2021 of Kyoto University Research Development Programs,

and research grants from the Takeda Science Foundation, the Japan

Foundation for Applied Enzymology, the Sumitomo Foundation for

Basic Science Research Projects, and Astellas Foundation for

Research on Metabolic Disorders. A part of this study was conducted through the CORE Program of the Radiation Biology Center,

Kyoto University and was supported by the Core-to-Core

Program, JSPS.

Author contributions

A.L.-F., J.V.M., and T.M. conceived and designed the experiments, analyzed data, and prepared the manuscript. A.L.-F. and T.M. performed

experiments. Y.W. provided technical support and performed mass

spectrometry. K.U. conducted the Bio-Plex cytokine assay. F.I., J.V.M.,

and T.M. contributed to critical discussions, writing, and editing the

manuscript. All authors contributed to ideas.

Competing interests

J.V.M. is an inventor on patent US6150160, is a paid consultant for Gilead

Sciences, serves on the scientific advisory board to Tessera Therapeutics Inc. (where he is paid as a consultant and has equity options),

has licensed reagents to Merck Pharmaceutical, and recently served on

the American Society of Human Genetics Board of Directors. The other

authors declare no competing interests.

Additional information

Supplementary information The online version contains

supplementary material available at

https://doi.org/10.1038/s41467-022-35757-6.

Correspondence and requests for materials should be addressed to

Tomoichiro Miyoshi.

Peer review information Nature Communications thanks John LaCava

and the other, anonymous, reviewer(s) for their contribution to the peer

review of this work. Peer reviewer reports are available.

Reprints and permissions information is available at

http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

25

Article

https://doi.org/10.1038/s41467-022-35757-6

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license, and indicate if

changes were made. The images or other third party material in this

article are included in the article’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this license, visit http://creativecommons.org/

licenses/by/4.0/.

© The Author(s) 2023, corrected publication 2023

Nature Communications | (2023)14:203

26

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る