リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「マイコプラズマ肺炎の炎症惹起メカニズムの解明」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

マイコプラズマ肺炎の炎症惹起メカニズムの解明

民谷, 繁幸 大阪大学 DOI:10.18910/82192

2021.03.24

概要

Mycoplasma pneumoniae(以下、Mp)は、ヒトにおいて肺炎の原因となる病原体である。Mpに起因する肺炎は、市中肺炎の約20-40%を占め、特に14歳以下の小児において好発しやすく、重篤化し、入院の原因となる例も少なくない。また日本において、肺炎で入院した6歳以上の小児のうち、約30%がMp感染に起因した肺炎であると報告されているなど、Mp肺炎は、小児領域において問題となっている呼吸器疾患の1つである。一方、成人においても、肺炎球菌やインフルエンザウイルスによる肺炎と比較すると症状は軽度ではあるが、長期間持続する乾性咳嗽や、気管支喘息の悪化を誘発するなど、日常生活に影響を及ぼすことが知られている。また、2011年、2012年、2016年に大流行し、第一選択薬であるマクロライド系抗菌薬に対する耐性菌の出現も相まって、大きな社会問題となっている。さらに、年間約10000人の罹患者が報告されているものの、潜在的には数十万から数百万人ほどの感染者が存在すると推定されている。

Mp感染時に観察される肺傷害は、主に、自然免疫系が過度に活性化した結果として引き起こされると考えられており、Mp感染後のマウスやヒトにおいて、好中球浸潤を伴う炎症が病理所見として認められる。一般に好中球は、自然免疫を担う主たる免疫細胞であり、外界からの異物や病原体の排除に寄与する反面、好中球が過度に活性化すると活性酸素などを放出し、組織傷害を引き起こすことが知られている。また、好中球がMpの排除に寄与しないとの報告も存在することから、Mp感染早期の好中球浸潤は生体にとって少なくとも有益ではない可能性があり、Mp肺炎の治療標的となり得ると推察される。しかし、Mp感染時における好中球浸潤メカニズムは未だ不明である。そこで本研究では、Mp肺炎の病態形成メカニズムの解明を目指し、肺組織への好中球浸潤メカニズムを含む、炎症惹起メカニズムの解明を図った。また、Mp肺炎の病態を長期間評価するために、遺伝子背景の異なる様々な近交系マウスを用い、Mpに対して感受性の高いマウスの探索を試みた。さらに、新規ワクチン開発に向けて大きな障壁となっている、不活化Mpワクチン接種による肺炎悪化メカニズムの解明も試みた。

まず、マウスにMpを経鼻より感染させたところ、感染1日後において好中球浸潤を伴う炎症および肺組織傷害が観察された。次に、Mp感染後の肺組織傷害における好中球の寄与を評価したところ、感染早期に浸潤する好中球が肺組織傷害の主体であること、さらにMpの排除には寄与しないことが明らかとなり、好中球浸潤の抑制がMp感染時における肺炎悪化の予防に繋がることが示された。そこで、詳細な好中球浸潤メカニズムを解明するために、Mpが有するTLR2リガンドであるリポタンパク質に着目し、TLR2シグナルが好中球浸潤に及ぼす影響をTLR2欠損マウスを用いて評価した。その結果、Mp感染時におけるTLR2シグナルは、好中球浸潤を促進する一方で、Mpの排除にも重要であることが示された。従って、Mp感染時における肺炎の抑制を目的としてTLR2シグナルを抑制することは、菌量の増加を誘発してしまう問題が考えられた。そこで、TLR2の下流のシグナルを追及した結果、興味深いことに、TLR2依存的に誘導されるIL-1 およびIL-12 p40は単独では好中球浸潤に寄与しない一方で、共存在下において、好中球浸潤に寄与することが明らかとなった。さらに、重要な点として、これらサイトカインがMpの排除には影響を与えないことも明らかとした。以上の結果より、IL-1 とIL-12 p40の両方を標的とした治療戦略がMp肺炎をコントロールする上で有効である可能性が考えられた。次に、肺での感染防御や恒常性維持を司る肺胞マクロファージに着目し、これらサイトカインの産生メカニズムの解明を図ったところ、IL-1 およびIL-12 p40の産生は、TLR2シグナル依存的に産生されたROSに依存する可能性が示された。また、IL-1 は肺胞マクロファージの細胞死に伴い分泌されることが示唆され、IL-12 p40とは誘導メカニズムが一部異なる可能性が示された。さらに、IL-12 p40は、TLR2シグナルのみならず、TLR2非依存的な経路による産生の可能性も示唆された。次に、百日咳毒素に類似した外毒素であるCommunity acquired respiratory distress syndrome (CARDS) toxinの、Mp感染時における炎症に及ぼす影響を評価した。抗CARDS toxin抗体投与により好中球数が感染1日後において減少傾向、感染3日後において有意な減少を示したことから、感染時における好中球浸潤の一部にCARDS toxinが寄与することが示された。また組換えCARDS toxin蛋白質を用いた検討より、CARDS toxinによる好中球浸潤がTLR2非依存的な経路に起因することを明らかとした。興味深いことに、Mp感染3日後における好中球浸潤の大部分がTLR2欠損マウスにおいて減少するにも関わらず、 TLR2非依存的な好中球浸潤を誘導するCARDS toxinが感染3日後における好中球浸潤に寄与することが明らかとなった。その詳細なメカニズムは不明であるものの、感染3日後の好中球浸潤には、TLR2シグナルとCARDS toxinが共に存在することが重要であり、両者が相乗効果を示す可能性も考えられた。以上、本研究では、Mpの排除機構に影響を与えず、好中球浸潤を抑制可能な候補因子として、TLR2シグナルに依存したIL-1 およびIL-12 p40を明らかとし、 CARDS toxinがMp肺炎の病態形成に一部寄与することを示した。これら因子を治療標的とすることで、より安全で有効な抗炎症薬となり得ると考えられる。また、DBA/2マウスがMpに対して高感受性を示すことが明らかとなり、Mp感染後の病態を評価する上で有用なモデルマウスであると共に、遺伝子背景の異なるマウスを用いることで、Mpの病原性を評価可能であることを示した。さらに、不活化Mpワクチン接種によるMp特異的CD4+ T細胞の誘導が肺炎悪化メカニズムの1つであることも明らかとした。

本研究結果が、Mpに対する安全で有効な新規抗炎症薬およびワクチン開発に向けた基盤情報となり得るものと期待される。

参考文献

1 Wilson, M. H. & Collier, A. M. Ultrastructural study of Mycoplasma pneumoniae in organ culture. Journal of bacteriology 125, 332-339, doi:10.1128/JB.125.1.332-339.1976 (1976).

2 Waites, K. B., Xiao, L., Liu, Y., Balish, M. F. & Atkinson, T. P. Mycoplasma pneumoniae from the Respiratory Tract and Beyond. Clinical microbiology reviews 30, 747-809, doi:10.1128/CMR.00114-16 (2017).

3 Lindsey, J. R. & Cassell, H. Experimental Mycoplasma pulmonis infection in pathogen-free mice. Models for studying mycoplasmosis of the respiratory tract. The American journal of pathology 72, 63-90 (1973).

4 Lin, J. H., Chen, S. P., Yeh, K. S. & Weng, C. N. Mycoplasma hyorhinis in Taiwan: diagnosis and isolation of swine pneumonia pathogen. Veterinary microbiology 115, 111-116, doi:10.1016/j.vetmic.2006.02.004 (2006).

5 Parker, A. M., Sheehy, P. A., Hazelton, M. S., Bosward, K. L. & House, J. K. A review of mycoplasma diagnostics in cattle. Journal of veterinary internal medicine 32, 1241-1252, doi:10.1111/jvim.15135 (2018).

6 Horner, P. J. & Martin, D. H. Mycoplasma genitalium Infection in Men. The Journal of infectious diseases 216, S396-S405, doi:10.1093/infdis/jix145 (2017).

7 Mardh, P. A. Mycoplasma hominis infection of the central nervous system in newborn infants. Sexually transmitted diseases 10, 331-334 (1983).

8 Parrott, G. L., Kinjo, T. & Fujita, J. A Compendium for Mycoplasma pneumoniae. Frontiers in microbiology 7, 513, doi:10.3389/fmicb.2016.00513 (2016).

9 Foy, H. M., Kenny, G. E., Cooney, M. K. & Allan, I. D. Long-term epidemiology of infections with Mycoplasma pneumoniae. The Journal of infectious diseases 139, 681-687, doi:10.1093/infdis/139.6.681 (1979).

10 Jain, S. et al. Community-acquired pneumonia requiring hospitalization among U.S. children. The New England journal of medicine 372, 835-845, doi:10.1056/NEJMoa1405870 (2015).

11 Zhao, C., Liu, J., Yang, H., Xiang, L. & Zhao, S. Mycoplasma pneumoniae- Associated Bronchiolitis Obliterans Following Acute Bronchiolitis. Scientific reports 7, 8478, doi:10.1038/s41598-017-08861-7 (2017).

12 Tanaka, H. Correlation between Radiological and Pathological Findings in Patients with Mycoplasma pneumoniae Pneumonia. Frontiers in microbiology 7, 695, doi:10.3389/fmicb.2016.00695 (2016).

13 Waites, K. B. & Talkington, D. F. Mycoplasma pneumoniae and its role as a human pathogen. Clinical microbiology reviews 17, 697-728, table of contents, doi:10.1128/CMR.17.4.697-728.2004 (2004).

14 Atkinson, T. P., Balish, M. F. & Waites, K. B. Epidemiology, clinical manifestations, pathogenesis and laboratory detection of Mycoplasma pneumoniae infections. FEMS microbiology reviews 32, 956-973, doi:10.1111/j.1574-6976.2008.00129.x (2008).

15 Lamoth, F. & Greub, G. Fastidious intracellular bacteria as causal agents of community-acquired pneumonia. Expert review of anti-infective therapy 8, 775- 790, doi:10.1586/eri.10.52 (2010).

16 Ozel, C. et al. [Mycoplasma Pneumoniae-Induced Meningoencephalitis]. Fortschritte der Neurologie-Psychiatrie 83, 392-396, doi:10.1055/s-0035-1553233 (2015).

17 Atkinson, T. P. & Waites, K. B. Mycoplasma pneumoniae Infections in Childhood. The Pediatric infectious disease journal 33, 92-94, doi:10.1097/INF.0000000000000171 (2014).

18 Fan, Q. et al. Pathogenesis and association of Mycoplasma pneumoniae infection with cardiac and hepatic damage. Microbiology and immunology 59, 375-380, doi:10.1111/1348-0421.12267 (2015).

19 Meyer Sauteur, P. M. et al. Infection with and Carriage of Mycoplasma pneumoniae in Children. Frontiers in microbiology 7, 329, doi:10.3389/fmicb.2016.00329 (2016).

20 Zhao, F. et al. Surveillance of macrolide-resistant Mycoplasma pneumoniae in Beijing, China, from 2008 to 2012. Antimicrobial agents and chemotherapy 57, 1521-1523, doi:10.1128/AAC.02060-12 (2013).

21 Katsukawa, C., Kenri, T., Shibayama, K. & Takahashi, K. Genetic characterization of Mycoplasma pneumoniae isolated in Osaka between 2011 and 2017: Decreased detection rate of macrolide-resistance and increase of p1 gene type 2 lineage strains. PloS one 14, e0209938, doi:10.1371/journal.pone.0209938 (2019).

22 Sanchez, A. R., Rogers, R. S., 3rd & Sheridan, P. J. Tetracycline and other tetracycline-derivative staining of the teeth and oral cavity. International journal of dermatology 43, 709-715, doi:10.1111/j.1365-4632.2004.02108.x (2004).

23 Adefurin, A., Sammons, H., Jacqz-Aigrain, E. & Choonara, I. Ciprofloxacin safety in paediatrics: a systematic review. Archives of disease in childhood 96, 874-880, doi:10.1136/adc.2010.208843 (2011).

24 Oishi, T. et al. Clinical implications of interleukin-18 levels in pediatric patients with Mycoplasma pneumoniae pneumonia. Journal of infection and chemotherapy : official journal of the Japan Society of Chemotherapy 17, 803- 806, doi:10.1007/s10156-011-0265-7 (2011).

25 Shimizu, T. Inflammation-inducing Factors of Mycoplasma pneumoniae. Frontiers in microbiology 7, 414, doi:10.3389/fmicb.2016.00414 (2016).

26 Takeuchi, O. et al. Cutting edge: preferentially the R-stereoisomer of the mycoplasmal lipopeptide macrophage-activating lipopeptide-2 activates immune cells through a toll-like receptor 2- and MyD88-dependent signaling pathway. Journal of immunology 164, 554-557, doi:10.4049/jimmunol.164.2.554 (2000).

27 Chen, Z. et al. Role of the Mycoplasma pneumoniae/Interleukin-8/Neutrophil Axis in the Pathogenesis of Pneumonia. PloS one 11, e0146377, doi:10.1371/journal.pone.0146377 (2016).

28 Mashimoto, H. et al. [Acute bronchiolitis due to Mycoplasma pneumoniae and successfully treated with steroids]. Nihon Kyobu Shikkan Gakkai zasshi 34, 1277-1282 (1996).

29 Smith, C. B., Chanock, R. M., Friedewald, W. T. & Alford, R. H. Mycoplasma pneumoniae infections in volunteers. Annals of the New York Academy of Sciences 143, 471-483, doi:10.1111/j.1749-6632.1967.tb27691.x (1967).

30 Smith, C. B., Friedewald, W. T. & Chanock, R. M. Inactivated Mycoplasma pneumoniae vaccine. Evaluation in volunteers. Jama 199, 353-358 (1967).

31 Chiang, W. C. et al. Epidemiology, clinical characteristics and antimicrobial resistance patterns of community-acquired pneumonia in 1702 hospitalized children in Singapore. Respirology 12, 254-261, doi:10.1111/j.1440- 1843.2006.01036.x (2007).

32 Okada, T. et al. A practical approach estimating etiologic agents using real-time PCR in pediatric inpatients with community-acquired pneumonia. Journal of infection and chemotherapy : official journal of the Japan Society of Chemotherapy 18, 832-840, doi:10.1007/s10156-012-0422-7 (2012).

33 Oishi, T. et al. Comparing Antimicrobial Susceptibilities among Mycoplasma pneumoniae Isolates from Pediatric Patients in Japan between Two Recent Epidemic Periods. Antimicrobial agents and chemotherapy 63, doi:10.1128/AAC.02517-18 (2019).

34 Saraya, T. et al. Identification of a mechanism for lung inflammation caused by Mycoplasma pneumoniae using a novel mouse model. Results in immunology 1, 76-87, doi:10.1016/j.rinim.2011.11.001 (2011).

35 Looney, M. R. & Matthay, M. A. Neutrophil sandwiches injure the microcirculation. Nature medicine 15, 364-366, doi:10.1038/nm0409-364 (2009).

36 Yamamoto, T., Kida, Y., Sakamoto, Y. & Kuwano, K. Mpn491, a secreted nuclease of Mycoplasma pneumoniae, plays a critical role in evading killing by neutrophil extracellular traps. Cellular microbiology 19, doi:10.1111/cmi.12666 (2017).

37 Lai, J. F. et al. Critical role of macrophages and their activation via MyD88- NFkappaB signaling in lung innate immunity to Mycoplasma pneumoniae. PloS one 5, e14417, doi:10.1371/journal.pone.0014417 (2010).

38 Shimizu, T. et al. Cytadherence of Mycoplasma pneumoniae induces inflammatory responses through autophagy and toll-like receptor 4. Infection and immunity 82, 3076-3086, doi:10.1128/IAI.01961-14 (2014).

39 Kannan, T. R. & Baseman, J. B. ADP-ribosylating and vacuolating cytotoxin of Mycoplasma pneumoniae represents unique virulence determinant among bacterial pathogens. Proceedings of the National Academy of Sciences of the United States of America 103, 6724-6729, doi:10.1073/pnas.0510644103 (2006).

40 Li, G. et al. High co-expression of TNF-alpha and CARDS toxin is a good predictor for refractory Mycoplasma pneumoniae pneumonia. Molecular medicine 25, 38, doi:10.1186/s10020-019-0105-2 (2019).

41 Hardy, R. D. et al. Analysis of pulmonary inflammation and function in the mouse and baboon after exposure to Mycoplasma pneumoniae CARDS toxin. PloS one 4, e7562, doi:10.1371/journal.pone.0007562 (2009).

42 Medina, J. L. et al. Mycoplasma pneumoniae CARDS toxin induces pulmonary eosinophilic and lymphocytic inflammation. American journal of respiratory cell and molecular biology 46, 815-822, doi:10.1165/rcmb.2011-0135OC (2012).

43 Kannan, T. R. et al. Synthesis and distribution of CARDS toxin during Mycoplasma pneumoniae infection in a murine model. The Journal of infectious diseases 204, 1596-1604, doi:10.1093/infdis/jir557 (2011).

44 Kannan, T. R. et al. Mycoplasma pneumoniae Community Acquired Respiratory Distress Syndrome toxin expression reveals growth phase and infection- dependent regulation. Molecular microbiology 76, 1127-1141, doi:10.1111/j.1365-2958.2010.07092.x (2010).

45 Forman, H. J. & Torres, M. Reactive oxygen species and cell signaling: respiratory burst in macrophage signaling. American journal of respiratory and critical care medicine 166, S4-8, doi:10.1164/rccm.2206007 (2002).

46 Prasad, S., Gupta, S. C. & Tyagi, A. K. Reactive oxygen species (ROS) and cancer: Role of antioxidative nutraceuticals. Cancer letters 387, 95-105, doi:10.1016/j.canlet.2016.03.042 (2017).

47 Camhi, S. L., Lee, P. & Choi, A. M. The oxidative stress response. New horizons 3, 170-182 (1995).

48 Sato, N. et al. Thiol-mediated redox regulation of apoptosis. Possible roles of cellular thiols other than glutathione in T cell apoptosis. Journal of immunology 154, 3194-3203 (1995).

49 Jabs, T. Reactive oxygen intermediates as mediators of programmed cell death in plants and animals. Biochemical pharmacology 57, 231-245, doi:10.1016/s0006-2952(98)00227-5 (1999).

50 Bose, S. et al. ADP-ribosylation of NLRP3 by Mycoplasma pneumoniae CARDS toxin regulates inflammasome activity. mBio 5, doi:10.1128/mBio.02186-14 (2014).

51 He, J. et al. Insights into the pathogenesis of Mycoplasma pneumoniae (Review). Molecular medicine reports 14, 4030-4036, doi:10.3892/mmr.2016.5765 (2016).

52 Ichikawa, S., Miyake, M., Fujii, R. & Konishi, Y. MyD88 associated ROS generation is crucial for Lactobacillus induced IL-12 production in macrophage. PloS one 7, e35880, doi:10.1371/journal.pone.0035880 (2012).

53 Yang, C. S. et al. ASK1-p38 MAPK-p47phox activation is essential for inflammatory responses during tuberculosis via TLR2-ROS signalling. Cellular microbiology 10, 741-754, doi:10.1111/j.1462-5822.2007.01081.x (2008).

54 Kuroda, E. et al. Inhaled Fine Particles Induce Alveolar Macrophage Death and Interleukin-1alpha Release to Promote Inducible Bronchus-Associated Lymphoid Tissue Formation. Immunity 45, 1299-1310, doi:10.1016/j.immuni.2016.11.010 (2016).

55 Garlanda, C., Dinarello, C. A. & Mantovani, A. The interleukin-1 family: back to the future. Immunity 39, 1003-1018, doi:10.1016/j.immuni.2013.11.010 (2013).

56 Rock, K. L., Latz, E., Ontiveros, F. & Kono, H. The sterile inflammatory response. Annual review of immunology 28, 321-342, doi:10.1146/annurev-immunol- 030409-101311 (2010).

57 Suwara, M. I. et al. IL-1alpha released from damaged epithelial cells is sufficient and essential to trigger inflammatory responses in human lung fibroblasts. Mucosal immunology 7, 684-693, doi:10.1038/mi.2013.87 (2014).

58 Caffrey, A. K. et al. IL-1alpha signaling is critical for leukocyte recruitment after pulmonary Aspergillus fumigatus challenge. PLoS pathogens 11, e1004625, doi:10.1371/journal.ppat.1004625 (2015).

59 Eigenbrod, T., Park, J. H., Harder, J., Iwakura, Y. & Nunez, G. Cutting edge: critical role for mesothelial cells in necrosis-induced inflammation through the recognition of IL-1 alpha released from dying cells. Journal of immunology 181, 8194-8198, doi:10.4049/jimmunol.181.12.8194 (2008).

60 Lauw, F. N. et al. Interleukin-12 induces sustained activation of multiple host inflammatory mediator systems in chimpanzees. The Journal of infectious diseases 179, 646-652, doi:10.1086/314636 (1999).

61 Roark, C. L., Simonian, P. L., Fontenot, A. P., Born, W. K. & O'Brien, R. L. gammadelta T cells: an important source of IL-17. Current opinion in immunology 20, 353-357, doi:10.1016/j.coi.2008.03.006 (2008).

62 Wu, Q. et al. IL-23-dependent IL-17 production is essential in neutrophil recruitment and activity in mouse lung defense against respiratory Mycoplasma pneumoniae infection. Microbes and infection 9, 78-86, doi:10.1016/j.micinf.2006.10.012 (2007).

63 Fettelschoss, A. et al. Inflammasome activation and IL-1beta target IL-1alpha for secretion as opposed to surface expression. Proceedings of the National Academy of Sciences of the United States of America 108, 18055-18060, doi:10.1073/pnas.1109176108 (2011).

64 Guo, L., Liu, F., Lu, M. P., Zheng, Q. & Chen, Z. M. Increased T cell activation in BALF from children with Mycoplasma pneumoniae pneumonia. Pediatric pulmonology 50, 814-819, doi:10.1002/ppul.23095 (2015).

65 De Simone, M. et al. Host genetic background influences the response to the opportunistic Pseudomonas aeruginosa infection altering cell-mediated immunity and bacterial replication. PloS one 9, e106873, doi:10.1371/journal.pone.0106873 (2014).

66 Spagnuolo, L. et al. The host genetic background defines diverse immune- reactivity and susceptibility to chronic Pseudomonas aeruginosa respiratory infection. Scientific reports 6, 36924, doi:10.1038/srep36924 (2016).

67 Lore, N. I., Cigana, C., Sipione, B. & Bragonzi, A. The impact of host genetic background in the Pseudomonas aeruginosa respiratory infections. Mammalian genome : official journal of the International Mammalian Genome Society 29, 550-557, doi:10.1007/s00335-018-9753-8 (2018).

68 Davis, J. K. et al. Strain differences in susceptibility to murine respiratory mycoplasmosis in C57BL/6 and C3H/HeN mice. Infection and immunity 50, 647- 654, doi:10.1128/IAI.50.3.647-654.1985 (1985).

69 Boonyarattanasoonthorn, T., Elewa, Y. H. A., Tag-El-Din-Hassan, H. T., Morimatsu, M. & Agui, T. Profiling of cellular immune responses to Mycoplasma pulmonis infection in C57BL/6 and DBA/2 mice. Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases 73, 55-65, doi:10.1016/j.meegid.2019.04.019 (2019).

70 Faulkner, C. B. et al. Gene expression and production of tumor necrosis factor alpha, interleukin 1, interleukin 6, and gamma interferon in C3H/HeN and C57BL/6N mice in acute Mycoplasma pulmonis disease. Infection and immunity 63, 4084-4090, doi:10.1128/IAI.63.10.4084-4090.1995 (1995).

71 Blotz, C., Singh, N., Dumke, R. & Stulke, J. Characterization of an Immunoglobulin Binding Protein (IbpM) From Mycoplasma pneumoniae. Frontiers in microbiology 11, 685, doi:10.3389/fmicb.2020.00685 (2020).

72 Gosselin, D. et al. Role of tumor necrosis factor alpha in innate resistance to mouse pulmonary infection with Pseudomonas aeruginosa. Infection and immunity 63, 3272-3278, doi:10.1128/IAI.63.9.3272-3278.1995 (1995).

73 Wilson, K. R., Napper, J. M., Denvir, J., Sollars, V. E. & Yu, H. D. Defect in early lung defence against Pseudomonas aeruginosa in DBA/2 mice is associated with acute inflammatory lung injury and reduced bactericidal activity in naive macrophages. Microbiology 153, 968-979, doi:10.1099/mic.0.2006/002261-0 (2007).

74 Yadav, J. S. et al. Multigenic control and sex bias in host susceptibility to spore- induced pulmonary anthrax in mice. Infection and immunity 79, 3204-3215, doi:10.1128/IAI.01389-10 (2011).

75 Cerquetti, M. C., Sordelli, D. O., Ortegon, R. A. & Bellanti, J. A. Impaired lung defenses against Staphylococcus aureus in mice with hereditary deficiency of the fifth component of complement. Infection and immunity 41, 1071-1076, doi:10.1128/IAI.41.3.1071-1076.1983 (1983).

76 Whaley, K. & Schwaeble, W. Complement and complement deficiencies. Seminars in liver disease 17, 297-310, doi:10.1055/s-2007-1007206 (1997).

77 Wood, A. J. T., Vassallo, A., Summers, C., Chilvers, E. R. & Conway-Morris, A. C5a anaphylatoxin and its role in critical illness-induced organ dysfunction. European journal of clinical investigation 48, e13028, doi:10.1111/eci.13028 (2018).

78 Czermak, B. J. et al. Protective effects of C5a blockade in sepsis. Nature medicine 5, 788-792, doi:10.1038/10512 (1999).

79 Rittirsch, D. et al. Functional roles for C5a receptors in sepsis. Nature medicine 14, 551-557, doi:10.1038/nm1753 (2008).

80 Wetsel, R. A., Fleischer, D. T. & Haviland, D. L. Deficiency of the murine fifth complement component (C5). A 2-base pair gene deletion in a 5'-exon. The Journal of biological chemistry 265, 2435-2440 (1990).

81 Fels, A. O. & Cohn, Z. A. The alveolar macrophage. Journal of applied physiology 60, 353-369, doi:10.1152/jappl.1986.60.2.353 (1986).

82 Arredouani, M. et al. The scavenger receptor MARCO is required for lung defense against pneumococcal pneumonia and inhaled particles. The Journal of experimental medicine 200, 267-272, doi:10.1084/jem.20040731 (2004).

83 Arredouani, M. S. et al. MARCO is the major binding receptor for unopsonized particles and bacteria on human alveolar macrophages. Journal of immunology 175, 6058-6064, doi:10.4049/jimmunol.175.9.6058 (2005).

84 Liu, T., Matsuguchi, T., Tsuboi, N., Yajima, T. & Yoshikai, Y. Differences in expression of toll-like receptors and their reactivities in dendritic cells in BALB/c and C57BL/6 mice. Infection and immunity 70, 6638-6645, doi:10.1128/iai.70.12.6638-6645.2002 (2002).

85 Croxford, A. L., Kulig, P. & Becher, B. IL-12-and IL-23 in health and disease. Cytokine & growth factor reviews 25, 415-421, doi:10.1016/j.cytogfr.2014.07.017 (2014).

86 Bosmann, M., Sarma, J. V., Atefi, G., Zetoune, F. S. & Ward, P. A. Evidence for anti-inflammatory effects of C5a on the innate IL-17A/IL-23 axis. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 26, 1640-1651, doi:10.1096/fj.11-199216 (2012).

87 Lajoie, S. et al. Complement-mediated regulation of the IL-17A axis is a central genetic determinant of the severity of experimental allergic asthma. Nature immunology 11, 928-935, doi:10.1038/ni.1926 (2010).

88 Chu, H. W. et al. Repeated respiratory Mycoplasma pneumoniae infections in mice: effect of host genetic background. Microbes and infection 8, 1764-1772, doi:10.1016/j.micinf.2006.02.014 (2006).

89 Cimolai, N., Mah, D. G., Taylor, G. P. & Morrison, B. J. Bases for the early immune response after rechallenge or component vaccination in an animal model of acute Mycoplasma pneumoniae pneumonitis. Vaccine 13, 305-309, doi:10.1016/0264-410x(95)93318-4 (1995).

90 Fernald, G. W., Collier, A. M. & Clyde, W. A., Jr. Respiratory infections due to Mycoplasma pneumoniae in infants and children. Pediatrics 55, 327-335 (1975).

91 Dobbs, N. A., Odeh, A. N., Sun, X. & Simecka, J. W. The Multifaceted Role of T Cell-Mediated Immunity in Pathogenesis and Resistance to Mycoplasma Respiratory Disease. Current trends in immunology 10, 1-19 (2009).

92 Yang, M., Meng, F., Gao, M., Cheng, G. & Wang, X. Cytokine signatures associate with disease severity in children with Mycoplasma pneumoniae pneumonia. Scientific reports 9, 17853, doi:10.1038/s41598-019-54313-9 (2019).

93 Way, E. E., Chen, K. & Kolls, J. K. Dysregulation in lung immunity - the protective and pathologic Th17 response in infection. European journal of immunology 43, 3116-3124, doi:10.1002/eji.201343713 (2013).

94 Wang, X. et al. Increased Frequency of Th17 Cells in Children With Mycoplasma pneumoniae Pneumonia. Journal of clinical laboratory analysis 30, 1214-1219, doi:10.1002/jcla.22005 (2016).

95 Zhao, J., Ji, X., Wang, Y. & Wang, X. Clinical Role of Serum Interleukin-17A in the Prediction of Refractory Mycoplasma pneumoniae Pneumonia in Children. Infection and drug resistance 13, 835-843, doi:10.2147/IDR.S240034 (2020).

96 Hausner, M., Schamberger, A., Naumann, W., Jacobs, E. & Dumke, R. Development of protective anti-Mycoplasma pneumoniae antibodies after immunization of guinea pigs with the combination of a P1-P30 chimeric recombinant protein and chitosan. Microbial pathogenesis 64, 23-32, doi:10.1016/j.micpath.2013.07.004 (2013).

97 Zhu, C. et al. Protective immune responses in mice induced by intramuscular and intranasal immunization with a Mycoplasma pneumoniae P1C DNA vaccine. Canadian journal of microbiology 58, 644-652, doi:10.1139/w2012-041 (2012).

98 Mogabgab, W. J. Efficacy of inactivated Mycoplasma pneumoniae vaccine demonstrated by protection in large field trials. Annals of the New York Academy of Sciences 225, 453-461, doi:10.1111/j.1749-6632.1973.tb45669.x (1973).

99 Mogabgab, W. J. Acute respiratory illnesses in university (1962-1966), military and industrial (1962-1963) populations. The American review of respiratory disease 98, 359-379, doi:10.1164/arrd.1968.98.3.359 (1968).

100 Cimolai, N., Cheong, A. C., Morrison, B. J. & Taylor, G. P. Mycoplasma pneumoniae reinfection and vaccination: protective oral vaccination and harmful immunoreactivity after re-infection and parenteral immunization. Vaccine 14, 1479-1483, doi:10.1016/s0264-410x(96)00068-0 (1996).

101 Szczepanek, S. M. et al. Vaccination of BALB/c mice with an avirulent Mycoplasma pneumoniae P30 mutant results in disease exacerbation upon challenge with a virulent strain. Infection and immunity 80, 1007-1014, doi:10.1128/IAI.06078-11 (2012).

102 Kolaczkowska, E. & Kubes, P. Neutrophil recruitment and function in health and inflammation. Nature reviews. Immunology 13, 159-175, doi:10.1038/nri3399 (2013).

103 Ye, P. et al. Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. The Journal of experimental medicine 194, 519- 527, doi:10.1084/jem.194.4.519 (2001).

104 Kudva, A. et al. Influenza A inhibits Th17-mediated host defense against bacterial pneumonia in mice. Journal of immunology 186, 1666-1674, doi:10.4049/jimmunol.1002194 (2011).

105 Okazaki, N. et al. Characteristics of macrolide-resistant Mycoplasma pneumoniae strains isolated from patients and induced with erythromycin in vitro. Microbiology and immunology 45, 617-620, doi:10.1111/j.1348-0421.2001.tb01293.x (2001).

106 Suzuki, Y. et al. Multiple-Locus Variable-Number Tandem-Repeat Analysis of Mycoplasma pneumoniae Isolates between 2004 and 2014 in Yamagata, Japan: Change in Molecular Characteristics during an 11-year Period. Japanese journal of infectious diseases 70, 642-646, doi:10.7883/yoken.JJID.2017.276 (2017).

107 Sasaki, T. et al. Epidemiological study of Mycoplasma pneumoniae infections in japan based on PCR-restriction fragment length polymorphism of the P1 cytadhesin gene. Journal of clinical microbiology 34, 447-449, doi:10.1128/JCM.34.2.447-449.1996 (1996).

108 Kawai, Y. et al. Nationwide surveillance of macrolide-resistant Mycoplasma pneumoniae infection in pediatric patients. Antimicrobial agents and chemotherapy 57, 4046-4049, doi:10.1128/AAC.00663-13 (2013).

109 Dumke, R., Catrein, I., Pirkil, E., Herrmann, R. & Jacobs, E. Subtyping of Mycoplasma pneumoniae isolates based on extended genome sequencing and on expression profiles. International journal of medical microbiology : IJMM 292, 513-525, doi:10.1078/1438-4221-00231 (2003).

110 Gruson, D. et al. In vitro development of resistance to six and four fluoroquinolones in Mycoplasma pneumoniae and Mycoplasma hominis, respectively. Antimicrobial agents and chemotherapy 49, 1190-1193, doi:10.1128/AAC.49.3.1190-1193.2005 (2005).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る