リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Versatile strategy using vaccinia virus-capping enzyme to synthesize functional 5′ cap-modified mRNAs」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Versatile strategy using vaccinia virus-capping enzyme to synthesize functional 5′ cap-modified mRNAs

Ohno, Hirohisa Akamine, Sae Mochizuki, Megumi Hayashi, Karin Akichika, Shinichiro Suzuki, Tsutomu Saito, Hirohide 京都大学 DOI:10.1093/nar/gkad019

2023.04.11

概要

The potential of synthetic mRNA as a genetic carrier has increased its application in scientific fields. Because the 5′ cap regulates the stability and translational activity of mRNAs, there are concerted efforts to search for and synthesize chemically-modified 5′ caps that improve the functionality of mRNA. Here, we report an easy and efficient method to synthesize functional mRNAs by modifying multiple 5′ cap analogs using a vaccinia virus-capping enzyme. We show that this enzyme can introduce a variety of GTP analogs to the 5′ end of RNA to generate 5′ cap-modified mRNAs that exhibit different translation levels. Notably, some of these modified mRNAs improve translation efficiency and can be conjugated to chemical structures, further increasing their functionality. Our versatile method to generate 5′ cap-modified mRNAs will provide useful tools for RNA therapeutics and biological research.

この論文で使われている画像

参考文献

1. Sahin,U., Kariko,K. and Tureci,O. (2014) mRNA-based

therapeutics–developing a new class of drugs. Nat. Rev. Drug Discov.,

13, 759–780.

2. Schott,J.W., Morgan,M., Galla,M. and Schambach,A. (2016) Viral

and synthetic RNA vector technologies and applications. Mol. Ther.,

24, 1513–1527.

3. Pardi,N., Hogan,M.J., Porter,F.W. and Weissman,D. (2018) mRNA

vaccines - a new era in vaccinology. Nat. Rev. Drug Discov., 17,

261–279.

4. Richner,J.M., Himansu,S., Dowd,K.A., Butler,S.L., Salazar,V.,

Fox,J.M., Julander,J.G., Tang,W.W., Shresta,S., Pierson,T.C. et al.

(2017) Modified mRNA vaccines protect against zika virus infection.

Cell, 168, 1114–1125.

5. Liang,F., Lindgren,G., Lin,A., Thompson,E.A., Ols,S., Rohss,J.,

John,S., Hassett,K., Yuzhakov,O., Bahl,K. et al. (2017) Efficient

targeting and activation of antigen-presenting cells in vivo after

modified mRNA vaccine administration in Rhesus Macaques. Mol.

Ther., 25, 2635–2647.

6. Mulligan,M.J., Lyke,K.E., Kitchin,N., Absalon,J., Gurtman,A.,

Lockhart,S., Neuzil,K., Raabe,V., Bailey,R., Swanson,K.A. et al.

(2020) Phase I/II study of COVID-19 RNA vaccine BNT162b1 in

adults. Nature, 586, 589–593.

7. Baden,L.R., El Sahly,H.M., Essink,B., Kotloff,K., Frey,S.,

Novak,R., Diemert,D., Spector,S.A., Rouphael,N., Creech,C.B. et al.

(2020) Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine.

N. Engl. J. Med., 384,403–416.

8. Yin,H., Song,C.Q., Dorkin,J.R., Zhu,L.J., Li,Y., Wu,Q., Park,A.,

Yang,J., Suresh,S., Bizhanova,A. et al. (2016) Therapeutic genome

editing by combined viral and non-viral delivery of CRISPR system

components in vivo. Nat. Biotechnol., 34, 328–333.

9. Miller,J.B., Zhang,S., Kos,P., Xiong,H., Zhou,K., Perelman,S.S.,

Zhu,H. and Siegwart,D.J. (2017) Non-viral CRISPR/Cas gene

editing in vitro and in vivo enabled by synthetic nanoparticle

co-delivery of Cas9 mRNA and sgRNA. Angew. Chem. Int. Ed Engl.,

56, 1059–1063.

10. Warren,L., Manos,P.D., Ahfeldt,T., Loh,Y.H., Li,H., Lau,F.,

Ebina,W., Mandal,P.K., Smith,Z.D., Meissner,A. et al. (2010) Highly

efficient reprogramming to pluripotency and directed differentiation

of human cells with synthetic modified mRNA. Cell Stem Cell, 7,

618–630.

11. Poleganov,M.A., Eminli,S., Beissert,T., Herz,S., Moon,J.I.,

Goldmann,J., Beyer,A., Heck,R., Burkhart,I., Barea Roldan,D. et al.

(2015) Efficient reprogramming of human fibroblasts and

blood-derived endothelial progenitor cells using nonmodified RNA

for reprogramming and immune evasion. Hum. Gene Ther., 26,

751–766.

12. Miki,K., Endo,K., Takahashi,S., Funakoshi,S., Takei,I.,

Katayama,S., Toyoda,T., Kotaka,M., Takaki,T., Umeda,M. et al.

(2015) Efficient detection and purification of cell populations using

synthetic microRNA switches. Cell Stem Cell, 16, 699–711.

13. Endo,K., Hayashi,K. and Saito,H. (2019) Numerical operations in

living cells by programmable RNA devices. Sci. Adv., 5, eaax0835.

14. Garneau,N.L., Wilusz,J. and Wilusz,C.J. (2007) The highways and

byways of mRNA decay. Nat. Rev. Mol. Cell Biol., 8, 113–126.

15. Jemielity,J., Fowler,T., Zuberek,J., Stepinski,J., Lewdorowicz,M.,

Niedzwiecka,A., Stolarski,R., Darzynkiewicz,E. and

Rhoads,R.E. (2003) Novel “anti-reverse” cap analogs with superior

translational properties. RNA, 9, 1108–1122.

16. Grudzien-Nogalska,E., Jemielity,J., Kowalska,J., Darzynkiewicz,E.

and Rhoads,R.E. (2007) Phosphorothioate cap analogs stabilize

mRNA and increase translational efficiency in mammalian cells.

RNA, 13, 1745–1755.

17. Strenkowska,M., Kowalska,J., Lukaszewicz,M., Zuberek,J., Su,W.,

Rhoads,R.E., Darzynkiewicz,E. and Jemielity,J. (2010) Towards

mRNA with superior translational activity: synthesis and properties

of ARCA tetraphosphates with single phosphorothioate

modifications. New J. Chem., 34, 993–1007.

18. Rydzik,A.M., Warminski,M., Sikorski,P.J., Baranowski,M.R.,

Walczak,S., Kowalska,J., Zuberek,J., Lukaszewicz,M., Nowak,E.,

TD,W.C. et al. (2017) mRNA cap analogues substituted in the

tetraphosphate chain with CX2: identification of O-to-CCl2 as the

first bridging modification that confers resistance to decapping

without impairing translation. Nucleic Acids Res., 45, 8661–8675.

Downloaded from https://academic.oup.com/nar/article/51/6/e34/7023930 by Kyoto Daigaku Bungakubu Toshokan user on 12 April 2023

various methods for modifying the RNA chain or 3 end.

Our method introduces the functional group orthogonal to

those reactions at the 5 site so that multiple site-selective

RNA modifications may be possible. We believe that 5 end

modification by VCE will become a versatile and useful

method for producing various types of functional RNAs in

RNA engineering and nanotechnology fields (48,49).

In conclusion, we show that various cap-modified RNAs

can be prepared easily and efficiently by using VCE and

GTP analogs. Modified dinucleotide cap analogs are useful for synthesizing various modified-capped RNAs cotranscriptionally. However, it is necessary to chemically synthesize the dinucleotide cap analog to introduce rare modifications. In contrast, our VCE-based method can generate cap-modified mRNAs that exhibit various translation levels using commercially available materials without

chemically-synthesized dinucleotides. Modified caps containing azide groups, amino groups, and alkynes can also

be easily synthesized, making it possible to use this method

as a 5 end-specific modification method for RNA. This

cap-modification method using the capping enzyme or the

capping enzyme in combination with bioconjugation techniques will enable the generation of functional mRNAs with

non-natural cap modifications and provide useful tools for

the fields of RNA therapeutics and biological research.

Nucleic Acids Research, 2023, Vol. 51, No. 6 e34

e34 Nucleic Acids Research, 2023, Vol. 51, No. 6

36. De la Pena,M., Kyrieleis,O.J.P. and Cusack,S. (2007) Structural

insights into the mechanism and evolution of the vaccinia virus

mRNA cap N7 methyl-transferase. EMBO J., 26, 4913–4925.

37. Hillen,H.S., Bartuli,J., Grimm,C., Dienemann,C., Bedenk,K.,

Szalay,A.A., Fischer,U. and Cramer,P. (2019) Structural basis of

poxvirus transcription: transcribing and capping vaccinia complexes.

Cell, 179, 1525–1536.

38. Kocmik,I., Piecyk,K., Rudzinska,M., Niedzwiecka,A.,

Darzynkiewicz,E., Grzela,R. and Jankowska-Anyszka,M. (2018)

Modified ARCA analogs providing enhanced translational

properties of capped mRNAs. Cell Cycle, 17, 1624–1636.

39. Kowalska,J., Lewdorowicz,M., Zuberek,J., Grudzien-Nogalska,E.,

Bojarska,E., Stepinski,J., Rhoads,R.E., Darzynkiewicz,E.,

Davis,R.E. and Jemielity,J. (2008) Synthesis and characterization of

mRNA cap analogs containing phosphorothioate substitutions that

bind tightly to eIF4E and are resistant to the decapping

pyrophosphatase DcpS. RNA, 14, 1119–1131.

40. Kore,A.R., Shanmugasundaram,M., Charles,I., Cheng,A.M. and

Barta,T.J. (2007) Synthesis and application of 2’-fluoro-substituted

cap analogs. Bioorg. Med. Chem. Lett., 17, 5295–5299.

41. Shanmugasundaram,M., Charles,I. and Kore,A.R. (2016) Design,

synthesis and biological evaluation of dinucleotide mRNA cap

analog containing propargyl moiety. Bioorg. Med. Chem., 24,

1204–1208.

42. Mamot,A., Sikorski,P.J., Warminski,M., Kowalska,J. and

Jemielity,J. (2017) Azido-Functionalized 5’ Cap Analogues for the

Preparation of Translationally Active mRNAs Suitable for

Fluorescent Labeling in Living Cells. Angew. Chem. Int. Ed Engl., 56,

15628–15632.

43. Holstein,J.M., Anhauser,L. and Rentmeister,A. (2016) Modifying

the 5’-Cap for click reactions of eukaryotic mRNA and to tune

translation efficiency in living cells. Angew. Chem. Int. Ed Engl., 55,

10899–10903.

44. Cohen,S.B. and Cech,T.R. (1997) Dynamics of thermal motions

within a large catalytic RNA investigated by cross-linking with

thiol-disulfide interchange. J. Am. Chem. Soc., 119, 6259–6268.

45. Warminski,M., Sikorski,P.J., Warminska,Z., Lukaszewicz,M.,

Kropiwnicka,A., Zuberek,J., Darzynkiewicz,E., Kowalska,J. and

Jemielity,J. (2017) Amino-functionalized 5’ Cap analogs as tools for

site-specific sequence-independent labeling of mRNA. Bioconjug.

Chem., 28, 1978–1992.

46. Ziemniak,M., Szabelski,M., Lukaszewicz,M., Nowicka,A.,

Darzynkiewicz,E., Rhoads,R.E., Wieczorek,Z. and

Jemielity,J. (2013) Synthesis and evaluation of fluorescent cap

analogues for mRNA labelling. RSC Adv., 3, 20943–20958.

47. Bednarek,S., Madan,V., Sikorski,P.J., Bartenschlager,R., Kowalska,J.

and Jemielity,J. (2018) mRNAs biotinylated within the 5’ cap and

protected against decapping: new tools to capture RNA-protein

complexes. Philos. Trans. R. Soc. Lond. B Biol. Sci., 373, 20180167.

48. Jasinski,D., Haque,F., Binzel,D.W. and Guo,P. (2017) Advancement

of the emerging field of RNA nanotechnology. ACS Nano, 11,

1142–1164.

49. Afonin,K.A., Dobrovolskaia,M.A., Church,G. and Bathe,M. (2020)

Opportunities, barriers, and a strategy for overcoming translational

challenges to therapeutic nucleic acid nanotechnology. ACS Nano,

14, 9221–9227.

Downloaded from https://academic.oup.com/nar/article/51/6/e34/7023930 by Kyoto Daigaku Bungakubu Toshokan user on 12 April 2023

19. Issur,M., Bougie,I., Despins,S. and Bisaillon,M. (2013) Enzymatic

synthesis of RNAs capped with nucleotide analogues reveals the

molecular basis for substrate selectivity of RNA capping enzyme:

impacts on RNA metabolism. PLoS One, 8, e75310.

20. Martin,S.A. and Moss,B. (1976) mRNA guanylyltransferase and

mRNA (guanine-7-)-methyltransferase from vaccinia virions. Donor

and acceptor substrate specificites. J. Biol. Chem., 251, 7313–7321.

21. Fuchs,A.L., Neu,A. and Sprangers,R. (2016) A general method for

rapid and cost-efficient large-scale production of 5’ capped RNA.

RNA, 22, 1454–1466.

22. Bougie,I. and Bisaillon,M. (2004) The broad spectrum antiviral

nucleoside ribavirin as a substrate for a viral RNA capping enzyme.

J. Biol. Chem., 279, 22124–22130.

23. Martin,F., Barends,S., Jaeger,S., Schaeffer,L., Prongidi-Fix,L. and

Eriani,G. (2011) Cap-assisted internal initiation of translation of

histone H4. Mol. Cell, 41, 197–209.

24. Gunawardana,D., Domashevskiy,A.V., Gayler,K.R. and

Goss,D.J. (2015) Efficient preparation and properties of mRNAs

containing a fluorescent cap analog: anthraniloyl-m(7)GpppG.

Translation (Austin), 3, e988538.

25. Ettwiller,L., Buswell,J., Yigit,E. and Schildkraut,I. (2016) A novel

enrichment strategy reveals unprecedented number of novel

transcription start sites at single base resolution in a model

prokaryote and the gut microbiome. BMC Genomics, 17, 199.

26. Suzuki,T., Ikeuchi,Y., Noma,A., Suzuki,T. and Sakaguchi,Y. (2007)

Mass spectrometric identification and characterization of

RNA-modifying enzymes. Methods Enzymol., 425, 211–229.

27. Ohira,T., Minowa,K., Sugiyama,K., Yamashita,S., Sakaguchi,Y.,

Miyauchi,K., Noguchi,R., Kaneko,A., Orita,I., Fukui,T. et al. (2022)

Reversible RNA phosphorylation stabilizes tRNA for cellular

thermotolerance. Nature, 605, 372–379.

28. Ohira,T. and Suzuki,T. (2016) Precursors of tRNAs are stabilized by

methylguanosine cap structures. Nat. Chem. Biol., 12, 648–655.

29. Lin,H., Miyauchi,K., Harada,T., Okita,R., Takeshita,E.,

Komaki,H., Fujioka,K., Yagasaki,H., Goto,Y.I., Yanaka,K. et al.

(2018) CO2-sensitive tRNA modification associated with human

mitochondrial disease. Nat. Commun., 9, 1875.

30. Debets,M.F., Van Berkel,S.S., Dommerholt,J., Dirks,A.J.,

Rutjes,F.P.J.T. and Van Delft,F.L. (2011) Bioconjugation with

strained alkenes and alkynes. Accounts Chem Res, 44, 805–815.

31. Kyrieleis,O.J., Chang,J., de la Pena,M., Shuman,S. and

Cusack,S. (2014) Crystal structure of vaccinia virus mRNA capping

enzyme provides insights into the mechanism and evolution of the

capping apparatus. Structure, 22, 452–465.

32. York,J.L. (1981) Effect of the structure of the glycon on the

acid-catalyzed hydrolysis of adenine nucleosides. J. Org. Chem., 46,

2171–2173.

33. Gates,K.S., Nooner,T. and Dutta,S. (2004) Biologically relevant

chemical reactions of N7-alkylguanine residues in DNA. Chem. Res.

Toxicol., 17, 839–856.

34. Kowalska,J., Wypijewska del Nogal,A., Darzynkiewicz,Z.M.,

Buck,J., Nicola,C., Kuhn,A.N., Lukaszewicz,M., Zuberek,J.,

Strenkowska,M., Ziemniak,M. et al. (2014) Synthesis, properties,

and biological activity of boranophosphate analogs of the mRNA

cap: versatile tools for manipulation of therapeutically relevant

cap-dependent processes. Nucleic Acids Res., 42, 10245–10264.

35. Zheng,S. and Shuman,S. (2008) Structure-function analysis of

vaccinia virus mRNA cap (guanine-N7) methyltransferase. RNA, 14,

696–705.

PAGE 16 OF 16

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る