リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Yb/Sr clock frequency measurement toward the redefinition of the second」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Yb/Sr clock frequency measurement toward the redefinition of the second

久井 裕介 横浜国立大学 DOI:info:doi/10.18880/00013940

2021.06.17

概要

光格子時計は次世代の原子時計で、新しい「秒」の定義の最も有力な候補となっている。現在の秒の定義であるセシウム原子時計はおよそ10年に1桁のペースで不確かさの低減が進み、現在では約3×10−16に到達した。しかし、これ以上の不確かさの低減は困難となっている。そこで、マイクロ波を基準周波数としているセシウム原子時計の代わりに、新たに光の周波数を基準とする光時計の開発が世界各国の研究機関で進められている。光時計には大きく分けて「単一イオン光時計」と「光格子時計」の2種類がある。単一イオン光時計は、1個のイオンをイオントラップに閉じ込め、時計遷移を分光する方式の原子時計である。単一イオン光時計は1個のイオンから得られる信号を用いているため、量子射影ノイズによる周波数安定度の制限が大きいという短所がある。一方、光格子時計では多数の中性原子を光格子と呼ばれるレーザーの定在波によって形成されるポテンシャルにトラップし、分光する方式を取っている。したがって、多数の原子からの信号を用いることができ、短時間で高い周波数安定度を得ることができる。光時計の進歩に伴い国際度量衡委員会(CIPM)は将来の秒の定義の改定に向けた候補リストとして「秒の2次表現」を採択し、実現されている単一イオン光時計や光格子時計のうちいくつかの原子種の時計遷移周波数を採用している。本研究で扱っているSr光格子時計も秒の2次表現の中に含まれている。また、CIPMは秒の再定義に向けたロードマップを策定しており、その中に5つのマイルストーンを設定している。そのうちの2つを紹介すると、「光時計が定期的に国際原子時(TAI)に貢献する」、「少なくとも5つの研究機関で、異なる光周波数標準の周波数比が5×10−18より小さい不確かさで測定され一致する」ことが求められている。特に5×10−18より小さい不確かさでの周波数比計測を行ったという報告は世界でもまだ1つも無く、挑戦的な課題である。この目標を世界として達成するためには、1つの研究機関がトップデータを出せばよいだけではなく、複数の研究機関で得られた知見を報告しあうことによって世界の光時計のレベルを高めていく、競争と協力が不可欠である。

我々産総研・横浜国大のグループでは、YbとSrの2種類の光格子時計の研究を進めてきた。特に最近では長期運転可能なYb光格子時計を開発し、6か月にわたる断続的な長期運転を行い、実際にTAIに貢献した。そこで、本研究では上記の2つのマイルストーンの達成を目標にSr光格子時計の改善と不確かさの再評価、さらにYb光格子時計との時計遷移周波数比の測定を行った。さらに、準備段階として、光格子時計の不確かさの大きな要因となる光格子による光シフトの影響を低減するために用いられる、光格子レーザーの周波数安定化の方法の1つである遅延線によるオフセットロックの手法について周波数安定度の評価を行った。また、Sr・Yb光格子時計に用いられる各種レーザーの周波数安定化と、時計レーザーの周波数計測を一度に行うための8ブランチ光周波数コムの開発を行った。これらの技術を用いて光格子時計の不確かさ低減およびロバスト化を行ってから不確かさ評価を行い、以前我々のグループで報告したよりも小さな系統不確かさを達成した。さらに、Yb/Sr時計遷移周波数比計測においては統計不確かさを以前よりも大きく低減し、系統不確かさで制限される測定を行った。以上の研究により、CIPMに新たなYb/Sr周波数比の値を報告し、光格子時計による秒の再定義の議論に貢献することが期待される。

この論文で使われている画像

参考文献

1. BIPM, The International System of Units (2009).

2. S. Weyers, V. Gerginov, M. Kazda, J. Rahm, B. Lipphardt, G. Dobrev, and K. Gibble, "Advances in the accuracy, stability, and reliability of the PTB primary fountain clocks," Metrologia 55, 789–805 (2018).

3. S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L. A. Liew, and J. Moreland, "A microfabricated atomic clock," Appl. Phys. Lett. 85, 1460–1462 (2004).

4. Y. Ovchinnikov and G. Marra, "Accurate rubidium atomic fountain frequency standard," Metrologia 48, 87–100 (2011).

5. S. Knappe, P. D. D. Schwindt, V. Shah, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, "A chip-scale atomic clock based on 87Rb with improved frequency stability," Opt. Express 13, 1249–1253 (2005).

6. H. Schnatz, B. Lipphardt, J. Helmcke, F. Riehle, and G. Zinner, "Phase coherent frequency measurement of visible radiation," Phys. Rev. Lett. 76, 18–21 (1996).

7. H. S. Margolis, G. P. Barwood, G. Huang, H. A. Klein, S. N. Lea, K. Szymaniec, and P. Gill, "Hertz-level measurement of the optical clock frequency in a single 88Sr+ ion," Science 306, 1355–1358 (2004).

8. M. Takamoto, F.-L. Hong, R. Higashi, and H. Katori, "An optical lattice clock.," Nature 435, 321–324 (2005).

9. U. Sterr, C. Degenhardt, H. Stoehr, C. Lisdat, H. Schnatz, J. Helmcke, F. Riehle, G. Wilpers, C. Oates, and L. Hollberg, "The optical calcium frequency standards of PTB and NIST," Comptes Rendus Phys. 5, 845–855 (2004).

10. H. Katori, M. Takamoto, V. G. Pal’chikov, and V. D. Ovsiannikov, "Ultrastable optical clock with neutral atoms in an engineered light shift trap.," Phys. Rev. Lett. 91, 173005 (2003).

11. I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, "Cryogenic optical lattice clocks," Nat. Photonics 9, 185–189 (2015).

12. T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, "Systematic evaluation of an atomic clock at 2 × 10-18 total uncertainty," Nat. Commun. 6, 6896 (2015).

13. W. F. McGrew, X. Zhang, R. J. Fasano, S. A. Schäffer, K. Beloy, D. Nicolodi, R. C. Brown, N. Hinkley, G. Milani, M. Schioppo, T. H. Yoon, and A. D. Ludlow, "Atomic clock performance enabling geodesy below the centimetre level," Nature 564, 87–90 (2018).

14. S. M. Brewer, J. S. Chen, A. M. Hankin, E. R. Clements, C. W. Chou, D. J. Wineland, D. B. Hume, and D. R. Leibrandt, "Al+ 27 Quantum-Logic Clock with a Systematic Uncertainty below 10-18," Phys. Rev. Lett. 123, 033201 (2019).

15. T. Bothwell, D. Kedar, E. Oelker, J. M. Robinson, S. L. Bromley, W. L. Tew, J. Ye, and C. J. Kennedy, "JILA SrI optical lattice clock with uncertainty of 2.0 × 10-18," Metrologia 56, 065004 (2019).

16. C. Sanner, N. Huntemann, R. Lange, C. Tamm, E. Peik, M. S. Safronova, and S. G. Porsev, "Optical clock comparison for Lorentz symmetry testing," Nature 567, 204–208 (2019).

17. M. Takamoto, I. Ushijima, N. Ohmae, T. Yahagi, K. Kokado, H. Shinkai, and H. Katori, "Test of general relativity by a pair of transportable optical lattice clocks," Nat. Photonics 14, 411–415 (2020).

18. G. Lion, I. Panet, P. Wolf, C. Guerlin, S. Bize, and P. Delva, "Determination of a high spatial resolution geopotential model using atomic clock comparisons," J. Geod. 91, 597–611 (2017).

19. T. Takano, M. Takamoto, I. Ushijima, N. Ohmae, T. Akatsuka, A. Yamaguchi, Y. Kuroishi, H. Munekane, B. Miyahara, and H. Katori, "Geopotential measurements with synchronously linked optical lattice clocks," Nat. Photonics 10, 662–666 (2016).

20. R. Bondarescu, A. Schärer, A. Lundgren, G. Hetényi, N. Houlié, P. Jetzer, and M. Bondarescu, "Ground-based optical atomic clocks as a tool to monitor vertical surface motion," Geophys. J. Int. 202, 1770–1774 (2015).

21. N. Huntemann, B. Lipphardt, C. Tamm, V. Gerginov, S. Weyers, and E. Peik, "Improved limit on a temporal variation of mp/me from comparisons of Yb+ and Cs atomic clocks," Phys. Rev. Lett. 113, 210802 (2014).

22. P. Wcisło, P. Morzyński, M. Bober, A. Cygan, D. Lisak, R. Ciuryło, and M. Zawada, "Experimental constraint on dark matter detection with optical atomic clocks," Nat. Astron. 1, 0009 (2016).

23. P. Wcisło, P. Ablewski, K. Beloy, S. Bilicki, M. Bober, R. Brown, R. Fasano, R. Ciuryło, H. Hachisu, T. Ido, J. Lodewyck, A. Ludlow, W. McGrew, P. Morzyński, D. Nicolodi, M. Schioppo, M. Sekido, R. Le Targat, P. Wolf, X. Zhang, B. Zjawin, and M. Zawada, "New bounds on dark matter coupling from a global network of optical atomic clocks," Sci. Adv. 4, eaau4869 (2018).

24. S. Kolkowitz, I. Pikovski, N. Langellier, M. D. Lukin, R. L. Walsworth, and J. Ye, "Gravitational wave detection with optical lattice atomic clocks," Phys. Rev. D 94, 124043 (2016).

25. S. B. Koller, J. Grotti, S. Vogt, A. Al-Masoudi, S. Dörscher, S. Häfner, U. Sterr, and C. Lisdat, "Transportable Optical Lattice Clock with 7×10-17 Uncertainty," Phys. Rev. Lett. 118, 073601 (2017).

26. T. Kobayashi, D. Akamatsu, K. Hosaka, Y. Hisai, M. Wada, H. Inaba, T. Suzuyama, F. Hong, and M. Yasuda, "Demonstration of the nearly continuous operation of an 171Yb optical lattice clock for half a year," Metrologia 57, 065021 (2020).

27. D. Świerad, S. Häfner, S. Vogt, B. Venon, D. Holleville, S. Bize, A. Kulosa, S. Bode, Y. Singh, K. Bongs, E. M. Rasel, J. Lodewyck, R. Le Targat, C. Lisdat, and U. Sterr, "Ultra-stable clock laser system development towards space applications," Sci. Rep. 6, 33973 (2016).

28. S. Origlia, M. S. Pramod, and S. Schiller, "Towards an optical clock for space: Compact, high-performance optical lattice clock based on bosonic atoms," Phys. Rev. A 98, 053443 (2018).

29. I. Courtillot, A. Quessada-Vial, A. Brusch, D. Kolker, G. D. Rovera, and P. Lemonde, "Accurate spectroscopy of Sr atoms," Eur. Phys. J. D 33, 161–171 (2005).

30. S.-Y. Lan, P.-C. Kuan, B. Estey, D. English, J. M. Brown, M. A. Hohensee, and H. Müller, "A Clock Directly Linking Time to a Particle’s Mass," Science 339, 554–557 (2013).

31. F. Riehle, P. Gill, F. Arias, and L. Robertsson, "The CIPM list of recommended frequency standard values: guidelines and procedures," Metrologia 55, 188–200 (2018).

32. T. Kohno, M. Yasuda, K. Hosaka, H. Inaba, Y. Nakajima, and F.-L. Hong, "Onedimensional optical lattice clock with a fermionic 171Yb isotope," Appl. Phys. Express 2, 072501 (2009).

33. D. Akamatsu, H. Inaba, K. Hosaka, M. Yasuda, A. Onae, T. Suzuyama, M. Amemiya, and F.-L. Hong, "Spectroscopy and frequency measurement of the 87Sr clock transition by laser linewidth transfer using an optical frequency comb," Appl. Phys. Express 7, 012401 (2014).

34. D. Akamatsu, M. Yasuda, H. Inaba, K. Hosaka, T. Tanabe, A. Onae, and F.-L. Hong, "Frequency ratio measurement of 171Yb and 87Sr optical lattice clocks," Opt. Express 22, 7898–7905 (2014).

35. D. Akamatsu, M. Yasuda, H. Inaba, K. Hosaka, T. Tanabe, A. Onae, and F. Hong, "Errata : Frequency ratio measurement of 171Yb and 87Sr optical lattice clocks," Opt. Express 22, 32199 (2014).

36. N. Nemitz, T. Ohkubo, M. Takamoto, I. Ushijima, M. Das, N. Ohmae, and H. Katori, "Frequency ratio of Yb and Sr clocks with 5 × 10-17 uncertainty at 150 seconds averaging time," Nat. Photonics 10, 258–261 (2016).

37. K. Yamanaka, N. Ohmae, I. Ushijima, M. Takamoto, and H. Katori, "Frequency ratio of 199Hg and 87Sr optical lattice clocks beyond the SI limit," Phys. Rev. Lett. 114, 230801 (2015).

38. B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, "An optical lattice clock with accuracy and stability at the 10-18 level," Nature 506, 71–75 (2014).

39. M. Pizzocaro, F. Bregolin, P. Barbieri, B. Rauf, F. Levi, and D. Calonico, "Absolute frequency measurement of the 1S0- 3P0 transition of 171Yb with a link to international atomic time," Metrologia 57, 035007 (2020).

40. N. Ohmae, F. Bregolin, N. Nemitz, and H. Katori, "Direct measurement of the frequency ratio for Hg and Yb optical lattice clocks and closure of the Hg/Yb/Sr loop," Opt. Express 28, 15112–15121 (2020).

41. A. Arvanitaki, J. Huang, and K. Van Tilburg, "Searching for dilaton dark matter with atomic clocks," Phys. Rev. D 91, 015015 (2015).

42. Y. Hisai, K. Ikeda, H. Sakagami, T. Horikiri, T. Kobayashi, K. Yoshii, and F.-L. Hong, "Evaluation of laser frequency offset locking using an electrical delay line," Appl. Opt. 57, 5628–5634 (2018).

43. J. J. Mcferran, "Laser stabilization with a frequency-to-voltage chip for narrowline laser cooling," Opt. Lett. 43, 1475–1478 (2018).

44. G. Ritt, G. Cennini, C. Geckeler, and M. Weitz, "Laser frequency offset locking using a side of filter technique," Appl. Phys. B 79, 363–365 (2004).

45. N. Strauß, I. Ernsting, S. Schiller, A. Wicht, P. Huke, and R. H. Rinkleff, "A simple scheme for precise relative frequency stabilization of lasers," Appl. Phys. B 88, 21–28 (2007).

46. G. Puentes, "Laser frequency offset locking scheme for high-field imaging of cold atoms," Appl. Phys. B 107, 11–16 (2012).

47. U. Schunemann, H. Engler, R. Grimm, M. Weidemuller, and M. Zielonkowski, "Simple scheme for tunable frequency offset locking of two lasers," Rev. Sci. Instrum. 70, 242–243 (1999).

48. K. Komori, Y. Takasu, M. Kumakura, Y. Takahashi, and T. Yabuzaki, "InjectionLocking of Blue Laser Diodes and Its Application to the Laser Cooling of Neutral Ytterbium Atoms," Jpn. J. Appl. Phys. 42, 5059–5062 (2003).

49. F. L. Hong, J. Ishikawa, Y. Zhang, R. Guo, A. Onae, and H. Matsumoto, "Frequency reproducibility of an iodine-stabilized Nd:YAG laser at 532 nm," Opt. Commun. 235, 377–385 (2004).

50. Y. Hisai, D. Akamatsu, T. Kobayashi, S. Okubo, H. Inaba, K. Hosaka, M. Yasuda, and F.-L. Hong, "Development of 8-branch Er:fiber frequency comb for Sr and Yb optical lattice clocks," Opt. Express 27, 6404–6414 (2019).

51. M. Yasuda, H. Inaba, T. Kohno, T. Tanabe, Y. Nakajima, and K. Hosaka, "Improved Absolute Frequency Measurement of the 171Yb Optical Lattice Clock towards the Redefinition of the Second," Appl. Phys. Express 5, 102401 (2012).

52. T. Kobayashi, D. Akamatsu, Y. Hisai, T. Tanabe, H. Inaba, T. Suzuyama, F.-L. Hong, K. Hosaka, and M. Yasuda, "Uncertainty Evaluation of an 171Yb Optical Lattice Clock at NMIJ," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65, 2449–2458 (2018).

53. H. Leopardi, J. Davila-Rodriguez, F. Quinlan, J. Olson, J. A. Sherman, S. A. Diddams, and T. M. Fortier, "Single-branch Er:fiber frequency comb for precision optical metrology with 10-18 fractional instability," Optica 4, 879–885 (2017).

54. N. Ohmae, N. Kuse, M. E. Fermann, and H. Katori, "All-polarizationmaintaining , single-port Er : fiber comb for high- stability comparison of optical lattice clocks," Appl. Phys. Express 10, 062503 (2017).

55. H. Inaba, Y. Daimon, F.-L. Hong, A. Onae, K. Minoshima, T. R. Schibli, H. Matsumoto, M. Hirano, T. Okuno, M. Onishi, and M. Nakazawa, "Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb," Opt. Express 14, 5223–5231 (2006).

56. K. Kashiwagi, Y. Nakajima, M. Wada, S. Okubo, and H. Inaba, "Multi-branch fiber comb with relative frequency uncertainty at 10-20 using fiber noise difference cancellation," Opt. Express 26, 8831–8840 (2018).

57. H. Inaba, S. Yanagimachi, F.-L. Hong, A. Onae, Y. Koga, and H. Matsumoto, "Stability degradation factors evaluated by phase noise measurement in an optical-microwave frequency link using an optical frequency comb," IEEE Trans. Instrum. Meas. 54, 763–766 (2005).

58. D. J. Jones, S. A. Diddams, K. Ranka, Jinendra, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-Envelope Phase Control of Femtosecond ModeLocked Lasers and Direct Optical Frequency Synthesis," Science 288, 635–639 (2000).

59. S. Okubo, K. Gunji, A. Onae, M. Schramm, K. Nakamura, F. L. Hong, T. Hattori, K. Hosaka, and H. Inaba, "All-optically stabilized frequency comb," Appl. Phys. Express 8, 122701 (2015).

60. Y. Nakajima, H. Inaba, K. Hosaka, K. Minoshima, A. Onae, M. Yasuda, T. Kohno, S. Kawato, T. Kobayashi, T. Katsuyama, and F.-L. Hong, "A multibranch, fiber-based frequency comb with millihertz-level relative linewidths using an intra-cavity electro-optic modulator," Opt. Express 18, 1667–1676 (2010).

61. D. Akamatsu, M. Yasuda, T. Kohno, A. Onae, and F.-L. Hong, "A compact light source at 461 nm using a periodically poled LiNbO3 waveguide for strontium magneto-optical trapping.," Opt. Express 19, 2046–2051 (2011).

62. J. H. Shirley, "Modulation transfer processes in optical heterodyne saturation spectroscopy," Opt. Lett. 7, 537–539 (1982).

63. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser Phase and Frequency Stabilization Using an Optical Resonator," Appl. Phys. B 31, 97–105 (1983).

64. H. Inaba, K. Hosaka, M. Yasuda, Y. Nakajima, K. Iwakuni, D. Akamatsu, S. Okubo, T. Kohno, A. Onae, and F.-L. Hong, "Spectroscopy of 171Yb in an optical lattice based on laser linewidth transfer using a narrow linewidth frequency comb," Opt. Express 21, 7891–7896 (2013).

65. L.-S. Ma, P. Jungner, J. Ye, and J. L. Hall, "Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path," Opt. Lett. 19, 1777–1779 (1994).

66. M. Takamoto, T. Takano, and H. Katori, "Frequency comparison of optical lattice clocks beyond the Dick limit," Nat. Photonics 5, 288–292 (2011).

67. T. Kobayashi, D. Akamatsu, K. Hosaka, and M. Yasuda, "A relocking scheme for optical phase locking using a digital circuit with an electrical delay line," Rev. Sci. Instrum. 90, 103002 (2019).

68. C. J. Foot, Atomic Physics (2005).

69. H. Katori, T. Ido, Y. Isoya, and M. Kuwata-gonokami, "Magneto-Optical Trapping and Cooling of Strontium Atoms down to the Photon Recoil Temperature," Phys. Rev. Lett. 82, 1116–1119 (1999).

70. M. M. Boyd, "High Precision Spectroscopy of Strontium in an Optical Lattice: Towards a New Standard for Frequency and Time," PhD thesis (2007).

71. T. Mukaiyama, H. Katori, T. Ido, Y. Li, and M. Kuwata-Gonokami, "RecoilLimited Laser Cooling of 87Sr Atoms near the Fermi Temperature," Phys. Rev. Lett. 90, 113002 (2003).

72. S. Friebel, C. D’Andrea, J. Walz, M. Weitz, and T. W. Hänsch, "CO2-laser optical lattice with cold rubidium atoms," Phys. Rev. A 57, R20–R23 (1998).

73. P. Lemonde and P. Wolf, "Optical lattice clock with atoms confined in a shallow trap," Phys. Rev. A 72, 033409 (2005).

74. R. H. Dicke, "The Effect of Collisions upon the Doppler Width of Spectral Lines," Phys. Rev. 89, 472–473 (1953).

75. M. Takamoto, F. L. Hong, R. Higashi, Y. Fujii, M. Imae, and H. Katori, "Improved frequency measurement of a one-dimensional optical lattice clock with a spin-polarized fermionic 87Sr isotope," J. Phys. Soc. Japan 75, 104302 (2006).

76. 大久保拓哉, "イッテルビウム・ストロンチウム光格子時計の時計遷移周波数比 測定," PhD thesis (2016).

77. S. Blatt, J. W. Thomsen, G. K. Campbell, A. D. Ludlow, M. D. Swallows, M. J. Martin, M. M. Boyd, and J. Ye, "Rabi spectroscopy and excitation inhomogeneity in a one-dimensional optical lattice clock," Phys. Rev. A 80, 052703 (2009).

78. Y. Hisai, D. Akamatsu, T. Kobayashi, K. Hosaka, H. Inaba, F.-L. Hong, and M. Yasuda, "Improved frequency ratio measurement with 87Sr and 171Yb optical lattice clocks at NMIJ," Metrologia 58, 015008 (2021).

79. I. Ushijima, M. Takamoto, and H. Katori, "Operational Magic Intensity for Sr Optical Lattice Clocks," Phys. Rev. Lett. 121, 263202 (2018).

80. S. G. Porsev and A. Derevianko, "Multipolar theory of blackbody radiation shift of atomic energy levels and its implications for optical lattice clocks," Phys. Rev. A 74, 020502 (2006).

81. M. S. Safronova, D. Jiang, B. Arora, C. W. Clark, M. G. Kozlov, U. I. Safronova, and W. R. Johnson, "Blackbody Radiation Shifts and Theoretical Contributions to Atomic Clock Research," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57, 94–105 (2010).

82. T. Middelmann, S. Falke, C. Lisdat, and U. Sterr, "High accuracy correction of blackbody radiation shift in an optical lattice clock," Phys. Rev. Lett. 109, 263004 (2012).

83. Joint Committee For Guides In Metrology, Evaluation of Measurement Data — Guide to the Expression of Uncertainty in Measurement (2008).

84. G. K. Campbell, M. M. Boyd, J. W. Thomsen, M. J. Martin, S. Blatt, M. D. Swallows, T. L. Nicholson, T. Fortier, C. W. Oates, S. A. Diddams, N. D. Lemke, P. Naidon, P. Julienne, J. Ye, and A. D. Ludlow, "Probing interactions between ultracold fermions," 324, 360–363 (2009).

85. M. J. Martin, "Quantum Metrology and Many-Body Physics : Pushing the Frontier of the Optical Lattice Clock," PhD thesis (2013).

86. M. M. Boyd, T. Zelevinsky, A. D. Ludlow, S. Blatt, T. Zanon-willette, S. M. Foreman, and J. Ye, "Nuclear spin effects in optical lattice clocks," Phys. Rev. A 76, 022510 (2007).

87. J. Lodewyck, M. Zawada, L. Lorini, M. Gurov, and P. Lemonde, "Observation and cancellation of a perturbing dc Stark shift in strontium optical lattice clocks," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59, 411–415 (2012).

88. W. M. Itano, J. C. Bergquist, J. J. Bollinger, J. M. Gilligan, D. J. Heinzen, F. L. Moore, M. G. Raizen, and D. J. Wineland, "Quantum projection noise: Population fluctuations in two-level systems," Phys. Rev. A 47, 3554–3570 (1993).

89. G. Santarelli, C. Audoin, A. Makdissi, P. Laurent, G. John Dick, and A. Clairon, "Frequency stability degradation of an oscillator slaved to a periodically interrogated atomic resonator," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 887–894 (1998).

90. A. Al-Masoudi, S. Dörscher, S. Häfner, U. Sterr, and C. Lisdat, "Noise and instability of an optical lattice clock," Phys. Rev. A 92, 063814 (2015).

91. C. Grebing, A. Al-Masoudi, S. Dörscher, S. Häfner, V. Gerginov, S. Weyers, B. Lipphardt, F. Riehle, U. Sterr, and C. Lisdat, "Realization of a timescale with an accurate optical lattice clock," Optica 3, 563–569 (2016).

92. M. Takamoto, I. Ushijima, M. Das, N. Nemitz, T. Ohkubo, K. Yamanaka, N. Ohmae, T. Takano, T. Akatsuka, A. Yamaguchi, and H. Katori, "Frequency ratios of Sr, Yb, and Hg based optical lattice clocks and their applications," Comptes Rendus Phys. 16, 489–498 (2015).

93. N. Nemitz, T. Ohkubo, M. Takamoto, I. Ushijima, M. Das, N. Ohmae, and H. Katori, "Frequency ratio of Yb and Sr clocks with 5 × 10-17 uncertainty at 150 seconds averaging time," Nat. Photonics 10, 258–261 (2016).

94. J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, "Geodesy and metrology with a transportable optical clock," Nat. Phys. 14, 437–441 (2018).

95. M. Fujieda, S. H. Yang, T. Gotoh, S. W. Hwang, H. Hachisu, H. Kim, Y. K. Lee, R. Tabuchi, T. Ido, W. K. Lee, M. S. Heo, C. Y. Park, D. H. Yu, and G. Petit, "Advanced Satellite-Based Frequency Transfer at the 10-16 Level," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65, 973–978 (2018).

96. M. Pizzocaro, M. Sekido, K. Takefuji, H. Ujihara, H. Hachisu, N. Nemitz, M. Tsutsumi, T. Kondo, E. Kawai, R. Ichikawa, K. Namba, Y. Okamoto, R. Takahashi, J. Komuro, C. Clivati, F. Bregolin, P. Barbieri, A. Mura, E. Cantoni, G. Cerretto, F. Levi, G. Maccaferri, M. Roma, C. Bortolotti, M. Negusini, R. Ricci, G. Zacchiroli, J. Roda, J. Leute, G. Petit, F. Perini, D. Calonico, and T. Ido, "Intercontinental comparison of optical atomic clocks through very long baseline interferometry," Nat. Phys. 17, 223–227 (2020).

97. D. Akamatsu, T. Kobayashi, Y. Hisai, T. Tanabe, K. Hosaka, M. Yasuda, and F.- L. Hong, "Dual-mode operation of an optical lattice clock using strontium and ytterbium atoms," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65, 1069– 1075 (2018).

98. R. Le Targat, X. Baillard, M. Fouché, A. Brusch, O. Tcherbakoff, G. D. Rovera, and P. Lemonde, "Accurate optical lattice clock with 87Sr atoms," Phys. Rev. Lett. 97, 130801 (2006).

99. A. D. Ludlow, M. M. Boyd, T. Zelevinsky, S. M. Foreman, S. Blatt, M. Notcutt, T. Ido, and J. Ye, "Systematic study of the 87Sr clock transition in an optical lattice," Phys. Rev. Lett. 96, 033003 (2006).

100. M. M. Boyd, A. D. Ludlow, S. Blatt, S. M. Foreman, T. Ido, T. Zelevinsky, and J. Ye, "87Sr Lattice Clock with Inaccuracy below 10-15," Phys. Rev. Lett. 98, 083002 (2007).

101. X. Baillard, M. Fouché, R. Le Targat, P. G. Westergaard, A. Lecallier, F. Chapelet, M. Abgrall, G. D. Rovera, P. Laurent, P. Rosenbusch, S. Bize, G. Santarelli, A. Clairon, P. Lemonde, G. Grosche, B. Lipphardt, and H. Schnatz, "An optical lattice clock with spin-polarized 87Sr atoms," Eur. Phys. J. D 48, 11– 17 (2008).

102. G. K. Campbell, A. D. Ludlow, S. Blatt, J. W. Thomsen, M. J. Martin, M. H. G. De Miranda, T. Zelevinsky, M. M. Boyd, J. Ye, S. A. Diddams, T. P. Heavner, T. E. Parker, and S. R. Jefferts, "The absolute frequency of the 87Sr optical clock transition," Metrologia 45, 539–548 (2008).

103. F. L. Hong, M. Musha, M. Takamoto, H. Inaba, S. Yanagimachi, A. Takamizawa, K. Watabe, T. Ikegami, M. Imae, Y. Fujii, M. Amemiya, K. Nakagawa, K. Ueda, and H. Katori, "Measuring the frequency of a Sr optical lattice clock using a 120 km coherent optical transfer," Opt. Lett. 34, 692–694 (2009).

104. S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, and S. Vogt, "The 87Sr optical frequency standard at PTB," Metrologia 48, 399–407 (2011).

105. K. Matsubara, H. Hachisu, Y. Li, S. Nagano, C. Locke, A. Nogami, M. Kajita, K. Hayasaka, T. Ido, and M. Hosokawa, "Direct comparison of a Ca+ single-ion clock against a Sr lattice clock to verify the absolute frequency measurement," Opt. Express 20, 22034–22041 (2012).

106. R. Le Targat, L. Lorini, Y. Le Coq, M. Zawada, J. Guéna, M. Abgrall, M. Gurov, P. Rosenbusch, D. G. Rovera, B. Nagórny, R. Gartman, P. G. Westergaard, M. E. Tobar, M. Lours, G. Santarelli, A. Clairon, S. Bize, P. Laurent, P. Lemonde, and J. Lodewyck, "Experimental realization of an optical second with strontium lattice clocks," Nat. Commun. 4, 2109 (2013).

107. S. Falke, N. Lemke, C. Grebing, B. Lipphardt, S. Weyers, V. Gerginov, N. Huntemann, C. Hagemann, A. Al-Masoudi, S. Häfner, S. Vogt, U. Sterr, and C. Lisdat, "A strontium lattice clock with 3 × 10-17 inaccuracy and its frequency," New J. Phys. 16, 073023 (2014).

108. Y. G. Lin, Q. Wang, Y. Li, F. Meng, B. K. Lin, E. J. Zang, Z. Sun, F. Fang, T. C. Li, and Z. J. Fang, "First Evaluation and Frequency Measurement of the Strontium Optical Lattice Clock at NIM," Chinese Phys. Lett. 32, 090601 (2015).

109. H. Hachisu and T. Ido, "Intermittent optical frequency measurements to reduce the dead time uncertainty of frequency link," Jpn. J. Appl. Phys. 54, 112401 (2015).

110. T. Tanabe, D. Akamatsu, T. Kobayashi, A. Takamizawa, S. Yanagimachi, T. Ikegami, T. Suzuyama, H. Inaba, S. Okubo, M. Yasuda, F. L. Hong, A. Onae, and K. Hosaka, "Improved Frequency Measurement of the 1S0- 3P0 Clock Transition in 87Sr Using a Cs Fountain Clock as a Transfer Oscillator," J. Phys. Soc. Japan 84, 115002 (2015).

111. J. Lodewyck, S. Bilicki, E. Bookjans, J.-L. Robyr, C. Shi, G. Vallet, R. Le Targat, D. Nicolodi, Y. Le Coq, J. Guéna, M. Abgrall, P. Rosenbusch, and S. Bize, "Optical to microwave clock frequency ratios with a nearly continuous strontium optical lattice clock," Metrologia 53, 1123–1130 (2016).

112. H. Hachisu, G. Petit, and T. Ido, "Absolute frequency measurement with uncertainty below 1 × 10-15 using International Atomic Time," Appl. Phys. B 123, 34 (2017).

113. H. Hachisu, G. Petit, F. Nakagawa, Y. Hanado, and T. Ido, "SI-traceable measurement of an optical frequency at the low 10-16 level without a local primary standard," Opt. Express 25, 8511–8523 (2017).

114. R. Schwarz, S. Dörscher, A. Al-Masoudi, E. Benkler, T. Legero, U. Sterr, S. Weyers, J. Rahm, B. Lipphardt, and C. Lisdat, "Long term measurement of the 87Sr clock frequency at the limit of primary Cs clocks," Phys. Rev. Res. 2, 033242 (2020).

115. R. Hobson, W. Bowden, A. Vianello, A. Silva, C. Baynham, H. S. Margolis, P. E. G. Baird, P. Gill, and I. R. Hill, "A strontium optical lattice clock with 1 × 10-17 uncertainty and measurement of its absolute frequency," Metrologia 57, 065026 (2020).

116. K. R. Parameswaran, J. R. Kurz, R. V. Roussev, and M. M. Fejer, "Observation of 99% pump depletion in single-pass second-harmonic generation in a periodically poled lithium niobate waveguide," Opt. Lett. 27, 43–45 (2002).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る