リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Evaluation of optical fiber noise for highly precise optical frequency comparison」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Evaluation of optical fiber noise for highly precise optical frequency comparison

和田 雅人 横浜国立大学 DOI:info:doi/10.18880/00013478

2020.11.19

概要

時間・周波数は最も小さい不確かさで実現できる物理量であり、種々の計測技術、情報通信技術及び基礎科学の研究など幅広い分野で利用されている。その精度の高さは、単に時計のみならず、例えばGPSカーナビなどの時計を用いる技術でも体感することができる。これらの大元となる時間・周波数標準は、国際的な枠組みの中で運用されている。ここでは、時間・周波数標準の仕組みと現在の課題について簡単に述べる。

 時間と周波数は互いに逆数の関係にあり、時間の単位である「秒」は国際単位系(SI: International System of Units)の基本単位である。「秒」の定義は、地球の自転に基づくもの、地球の公転に基づくもの、そして原子の放射に基づくものへと変遷し、その精度を向上させてきた。1967年以降、「秒は、セシウム133の原子の基底状態の二つの超微細構造準位の間の遷移に対応する放射の周期の9192631770倍の継続時間である。」と定義されており、約9.2GHzのマイクロ波周波数が基準となっている。

 一方で、時間(時刻)の基準は時系と呼ばれ、現在でも複数の時系が使われている。現行の秒の定義に基づく時系は国際原子時(TAI: International Atomic Time)と呼ばれるものであり、これは世界各国の標準機関や天文観測所が有する多数の原子時計を加重平均して作られている。TAIは原子時計のみによって作られた時系であり、そのままでは地球の自転に基づく時系とずれてしまう。そこで、TAIにうるう秒調整を行った時系が協定世界時(UTC: Coordinated Universal Time)であり、主要な時系として広く使われている。TAI並びにUTCは過去一か月分の原子時計のデータから算出されるため、実時間では利用できない仮想の時系である。これに対し、UTCを実時間で利用できるようにした時系がUTC(k)(kは機関の略称)であり、これは標準機関kが有する原子時計群を平均して作られた局所的な時系、言わばUTCの小型版である。各国のUTC(k)とドイツのUTC(PTB)との差は衛星を介して日常的に測定されており、この国際的な時間・周波数比較によってUTC(k)とUTCの関係は担保されている。

 TAI並びにUTCの構築に寄与する計400台あまりの原子時計のうち、特に重要な役割を担うのが先進国のみが有する世界でおよそ10台ほどの「一次周波数標準器」である。一次周波数標準器は、定義通りの秒(周波数標準)を実現し、装置単独でその不確かさ評価を行うことが可能である。その他のものは大半が商用原子時計であり、多数の加重平均により時系の信頼性及び安定性の向上に貢献しているものの、その絶対値は正確ではない。従って、秒の定義に基づいた正確な時系を実現するためには、不確かさの小さい一次周波数標準器による周波数校正が必要となる。

 一次周波数標準器の不確かさは過去50年間で10年ごとに約1桁ずつ改善されてきた。最新のセシウム一次周波数標準器は原子泉方式(ファウンテン)によるものであり、その不確かさは10−16である[1–7]。一方で、ここ20年で原子やイオンの光領域にある遷移(数百THz)を用いる「光時計」の研究が飛躍的な発展を遂げ、2005年頃にセシウム原子時計の持つ不確かさ10−15と同程度になり、現在ではそれを凌ぐ10−17–10−18に到達したと報告されている[8–18]。この急速な高精度化の背景には、2000年頃に発明された「光周波数コム」により、マイクロ波周波数と光周波数、及び波長の離れた光周波数同士のリンクが容易になったということがある。既にセシウム原子時計を基準とする周波数測定では光時計本来の小さな不確かさを評価しきれなくなっており、光時計の不確かさは光時計同士の周波数比を測定することで推定されている。このような高精度な時計を時間・周波数標準として利用するために、国際度量衡委員会によって「秒の二次表現」というリストが作成されている。このリストに記載された時計は、セシウム一次周波数標準器とほぼ同等の不確かさで「秒」を実現することができる。これらの時計は、秒の再定義のための候補であると共に、より正確な時系を築くためにTAIの周波数校正に貢献することが期待されている[19,20]。

 このような状況からわかるように、国際度量衡委員会では既に「秒」の再定義が検討されている。定義改訂に踏み切るための具体的な条件の中には、「異なる研究機関の間での光時計の比較、または波長の異なる異種の光時計の比較により、新しい定義の候補である光時計がその時点における最良のセシウム原子時計よりも2桁以上小さな不確かさを示すこと」などが含まれている[21,22]。これは、標準の同等性の確認及び信頼性の確保の観点等から定められており、より小さい不確かさで光周波数を比較する技術が光時計の開発と並び極めて重要となっていることを意味している。

 以上を背景として、本研究では光周波数比較技術の高精度化に関する研究を行う。次節では、高精度な光周波数比較の意義についてより詳細に説明する。その後、遠隔地点間の時間・周波数比較、及び異なる波長間での周波数比較について既存の技術の特徴と現状について概観する。これらを踏まえ、本研究の目的と本学位論文の構成を述べる。

この論文で使われている画像

参考文献

[1] V Gerginov, N Nemitz, S Weyers, R Schröder, D Griebsch, and R Wynands. Uncer- tainty evaluation of the caesium fountain clock PTB-CSF2. Metrologia, Vol. 47, No. 1, pp. 65–79, dec 2009.

[2] Krzysztof Szymaniec, Sang Eon Park, Giuseppe Marra, and Witold Chałupczak. First accuracy evaluation of the NPL-CsF2 primary frequency standard. Metrologia, Vol. 47, No. 4, pp. 363–376, jun 2010.

[3] Thomas E Parker. Long-term comparison of caesium fountain primary frequency standards. Metrologia, Vol. 47, No. 1, p. 1, 2010.

[4] Ruoxin Li, Kurt Gibble, and Krzysztof Szymaniec. Improved accuracy of the NPL- CsF2 primary frequency standard: evaluation of distributed cavity phase and mi- crowave lensing frequency shifts. Metrologia, Vol. 48, No. 5, p. 283, 2011.

[5] S Weyers, V Gerginov, N Nemitz, R Li, and K Gibble. Distributed cavity phase fre- quency shifts of the caesium fountain PTB-CSF2. Metrologia, Vol. 49, No. 1, p. 82, 2012.

[6] J. Guena, M. Abgrall, D. Rovera, P. Laurent, B. Chupin, M. Lours, G. Santarelli, P. Rosenbusch, M.E. Tobar, Ruoxin Li, K. Gibble, A. Clairon, and S. Bize. Progress in atomic fountains at LNE-SYRTE. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, Vol. 59, No. 3, pp. 391–409, 2012.

[7] Thomas P Heavner, Elizabeth A Donley, Filippo Levi, Giovanni Costanzo, Thomas E Parker, Jon H Shirley, Neil Ashby, Stephan Barlow, and S R Jefferts. First accuracy evaluation of NIST-F2. Metrologia, Vol. 51, No. 3, pp. 174–182, may 2014.

[8] C. W. Chou, D. B. Hume, J. C. J. Koelemeij, D. J. Wineland, and T. Rosenband. Fre- quency comparison of two high-accuracy Al+ optical clocks. Phys. Rev. Lett., Vol. 104, p. 070802, Feb 2010.

[9] Hidetoshi Katori. Optical lattice clocks and quantum metrology. Nat Photon, Vol. 5, No. 4, pp. 203–210, April 2011.

[10] N. Huntemann, M. Okhapkin, B. Lipphardt, S. Weyers, Chr. Tamm, and E. Peik. High- accuracy optical clock based on the octupole transition in 171Yb+. Phys. Rev. Lett., Vol. 108, p. 090801, Feb 2012.

[11] J. A. Sherman, N. D. Lemke, N. Hinkley, M. Pizzocaro, R. W. Fox, A. D. Ludlow, and C. W. Oates. High-accuracy measurement of atomic polarizability in an optical lattice clock. Phys. Rev. Lett., Vol. 108, p. 153002, Apr 2012.

[12] T. L. Nicholson, M. J. Martin, J. R. Williams, B. J. Bloom, M. Bishof, M. D. Swallows, S. L. Campbell, and J. Ye. Comparison of two independent Sr optical clocks with 1×10−17 stability at 103 s. Phys. Rev. Lett., Vol. 109, p. 230801, Dec 2012.

[13] R. Le Targat, L. Lorini, Y. Le Coq, M. Zawada, J. Guéna, M. Abgrall, M. Gurov, P. Rosenbusch, D. G. Rovera, B. Nagórny, R. Gartman, P. G. Westergaard, M. E. Tobar, M. Lours, G. Santarelli, A. Clairon, S. Bize, P. Laurent, P. Lemonde, and J. Lodewyck. Experimental realization of an optical second with strontium lattice clocks. Nature Communications, Vol. 4, No. 1, p. 2109, July 2013.

[14] N. Hinkley, J. A. Sherman, N. B. Phillips, M. Schioppo, N. D. Lemke, K. Beloy, M. Piz- zocaro, C. W. Oates, and A. D. Ludlow. An atomic clock with 10−18 instability. Science, Vol. 341, No. 6151, pp. 1215–1218, 2013.

[15] T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye. Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty. Nature Communications, Vol. 6, p. 6896, April 2015.

[16] Ichiro Ushijima, Masao Takamoto, Manoj Das, Takuya Ohkubo, and Hidetoshi Katori. Cryogenic optical lattice clocks. Nature Photonics, Vol. 9, No. 3, pp. 185–189, March 2015.

[17] Masao Takamoto, Ichiro Ushijima, Manoj Das, Nils Nemitz, Takuya Ohkubo, Kazuhiro Yamanaka, Noriaki Ohmae, Tetsushi Takano, Tomoya Akatsuka, Atsushi Yamaguchi, and Hidetoshi Katori. Frequency ratios of Sr, Yb, and Hg based optical lattice clocks and their applications. Comptes Rendus Physique, Vol. 16, No. 5, pp. 489–498, jun 2015.

[18] Tobias Bothwell, Dhruv Kedar, Eric Oelker, John M Robinson, Sarah L Bromley, We- ston L Tew, Jun Ye, and Colin J Kennedy. JILA SrI optical lattice clock with uncertainty of 2.0 × 10−18. Metrologia, Vol. 56, No. 6, p. 065004, oct 2019.

[19] Feng-Lei Hong. Optical frequency standards for time and length applications. Mea- surement Science and Technology, Vol. 28, No. 1, p. 012002, 2017.

[20] 洪鋒雷, 安田正美. 時間の単位「秒」についての基礎解説と最新動向. 国際単位系(SI)基本単位の定義改定と計量標準, pp. 25–34, 2020.

[21] Fritz Riehle. Towards a redefinition of the second based on optical atomic clocks. Comptes Rendus Physique, Vol. 16, No. 5, pp. 506–515, jun 2015.

[22] Fritz Riehle, Patrick Gill, Felicitas Arias, and Lennart Robertsson. The CIPM list of rec- ommended frequency standard values: guidelines and procedures. Metrologia, Vol. 55, No. 2, pp. 188–200, feb 2018.

[23] S. B. Koller, J. Grotti, St. Vogt, A. Al-Masoudi, S. Dörscher, S. Häfner, U. Sterr, and Ch. Lisdat. Transportable optical lattice clock with 7 × 10−17 uncertainty. Phys. Rev. Lett., Vol. 118, p. 073601, Feb 2017.

[24] J. Cao, P. Zhang, J. Shang, K. Cui, J. Yuan, S. Chao, S. Wang, H. Shu, and X. Huang. A compact, transportable single-ion optical clock with 7.8 × 10−17 systematic uncer- tainty. Applied Physics B, Vol. 123, No. 4, p. 112, March 2017.

[25] Tetsushi Takano, Masao Takamoto, Ichiro Ushijima, Noriaki Ohmae, Tomoya Akat- suka, Atsushi Yamaguchi, Yuki Kuroishi, Hiroshi Munekane, Basara Miyahara, and Hidetoshi Katori. Geopotential measurements with synchronously linked optical lat- tice clocks. Nature Photonics, Vol. 10, No. 10, pp. 662–666, aug 2016.

[26] Tanja E Mehlstäubler, Gesine Grosche, Christian Lisdat, Piet O Schmidt, and Heiner Denker. Atomic clocks for geodesy. Reports on Progress in Physics, Vol. 81, No. 6, p. 064401, apr 2018.

[27] J. E. Gray and D. W. Allan. A method for estimating the frequency stability of an individual oscillator. In 28th Annual Symposium on Frequency Control, pp. 243–246, 1974.

[28] Michael T. Murphy, Adrian L. Malec, and J. Xavier Prochaska. Precise limits on cos- mological variability of the fine-structure constant with zinc and chromium quasar absorption lines. Monthly Notices of the Royal Astronomical Society, Vol. 461, No. 3, pp. 2461–2479, jun 2016.

[29] Edward D. Davis and Leila Hamdan. Reappraisal of the limit on the variation in α implied by the Oklo natural fission reactors. Phys. Rev. C, Vol. 92, p. 014319, Jul 2015.

[30] E. Peik, B. Lipphardt, H. Schnatz, T. Schneider, Chr. Tamm, and S. G. Karshenboim. Limit on the present temporal variation of the fine structure constant. Phys. Rev. Lett., Vol. 93, p. 170801, Oct 2004.

[31] Asimina Arvanitaki, Junwu Huang, and Ken Van Tilburg. Searching for dilaton dark matter with atomic clocks. Phys. Rev. D, Vol. 91, p. 015015, Jan 2015.

[32] C. J. Campbell, A. G. Radnaev, A. Kuzmich, V. A. Dzuba, V. V. Flambaum, and A. Dere- vianko. Single-ion nuclear clock for metrology at the 19th decimal place. Phys. Rev. Lett., Vol. 108, p. 120802, Mar 2012.

[33] D. W. Allan and M. A. Weiss. Accurate time and frequency transfer during common- view of a GPS satellite. In 34th Annual Symposium on Frequency Control, pp. 334–346, 1980.

[34] K. M. Larson and J. Levine. Carrier-phase time transfer. IEEE Transactions on Ultrason- ics, Ferroelectrics, and Frequency Control, Vol. 46, No. 4, pp. 1001–1012, 1999.

[35] Gérard Petit, Amale Kanj, Sylvain Loyer, Jérôme Delporte, Flavien Mercier, and Félix Perosanz. 1 × 10−16 frequency transfer by GPS PPP with integer ambiguity resolution. Metrologia, Vol. 52, No. 2, pp. 301–309, mar 2015.

[36] D. Kirchner. Two-way time transfer via communication satellites. Proceedings of the IEEE, Vol. 79, No. 7, pp. 983–990, 1991.

[37] A Bauch, J Achkar, S Bize, D Calonico, R Dach, R Hlavac´, L Lorini, T Parker, G Petit, D Piester, K Szymaniec, and P Uhrich. Comparison between frequency standards in Europe and the USA at the 10−15 uncertainty level. Metrologia, Vol. 43, No. 1, p. 109, 2006.

[38] Miho Fujieda, Sung-Hoon Yang, Tadahiro Gotoh, Sang-Wook Hwang, Hidekazu Hachisu, Huidong Kim, Young Kyu Lee, Ryo Tabuchi, Tetsuya Ido, Won-Kyu Lee, Myoung-Sun Heo, Chang Yong Park, Dai-Hyuk Yu, and Gerard Petit. Advanced satellite-based frequency transfer at the 10−16 level. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 65, No. 6, pp. 973–978, jun 2018.

[39] Philippe Laurent, Didier Massonnet, Luigi Cacciapuoti, and Christophe Salomon. The ACES/PHARAO space mission. Comptes Rendus Physique, Vol. 16, No. 5, pp. 540–552, jun 2015.

[40] L. Cacciapuoti, P. Laurent, and C. Salomon. Atomic clock ensemble in space. In 52nd Rencontres de Moriond on Gravitation, pp. 139–148, 2017.

[41] L. Cacciapuoti and Ch. Salomon. Space clocks and fundamental tests: The ACES experiment. The European Physical Journal Special Topics, Vol. 172, No. 1, pp. 57–68, jun 2009.

[42] M. Amemiya, M. Imae, Y. Fujii, T. Suzuyama, Feng-Lei Hong, and M. Takamoto. Pre- cise frequency comparison system using bidirectional optical amplifiers. IEEE Trans- actions on Instrumentation and Measurement, Vol. 59, No. 3, pp. 631–640, mar 2010.

[43] C. E. Calosso, E. Bertacco, D. Calonico, C. Clivati, G. A. Costanzo, M. Frittelli, F. Levi, A. Mura, and A. Godone. Frequency transfer via a two-way optical phase comparison on a multiplexed fiber network. Optics Letters, Vol. 39, No. 5, p. 1177, feb 2014.

[44] Long-Sheng Ma, Peter Jungner, Jun Ye, and John L. Hall. Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path. Opt. Lett., Vol. 19, No. 21, pp. 1777–1779, Nov 1994.

[45] Seth M. Foreman, Kevin W. Holman, Darren D. Hudson, David J. Jones, and Jun Ye. Remote transfer of ultrastable frequency references via fiber networks. Review of Scientific Instruments, Vol. 78, No. 2, p. 021101, 2007.

[46] Russell Wilcox, J. M. Byrd, Lawrence Doolittle, Gang Huang, and J. W. Staples. Sta- ble transmission of radio frequency signals on fiber links using interferometric delay sensing. Optics Letters, Vol. 34, No. 20, p. 3050, oct 2009.

[47] F.-L. Hong, M. Musha, M. Takamoto, H. Inaba, S. Yanagimachi, A. Takamizawa, K. Watabe, T. Ikegami, M. Imae, Y. Fujii, M. Amemiya, K. Nakagawa, K. Ueda, and H. Katori. Measuring the frequency of a Sr optical lattice clock using a 120 km coher- ent optical transfer. Opt. Lett., Vol. 34, No. 5, pp. 692–694, Mar 2009.

[48] S. Droste, F. Ozimek, Th. Udem, K. Predehl, T. W. Hänsch, H. Schnatz, G. Grosche, and R. Holzwarth. Optical-frequency transfer over a single-span 1840 km fiber link. Phys. Rev. Lett., Vol. 111, p. 110801, Sep 2013.

[49] D. Calonico, E.K. Bertacco, C.E. Calosso, C. Clivati, G.A. Costanzo, M. Frittelli, A. Godone, A. Mura, N. Poli, D.V. Sutyrin, G. Tino, M.E. Zucco, and F. Levi. High- accuracy coherent optical frequency transfer over a doubled 642-km fiber link. Applied Physics B, Vol. 117, No. 3, pp. 979–986, 2014.

[50] K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, Th. Legero, T. W. Hänsch, Th. Udem, R. Holzwarth, and H. Schnatz. A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place. Science, Vol. 336, No. 6080, pp. 441–444, 2012.

[51] Arthur Matveev, Christian G. Parthey, Katharina Predehl, Janis Alnis, Axel Beyer, Ronald Holzwarth, Thomas Udem, Tobias Wilken, Nikolai Kolachevsky, Michel Ab- grall, Daniele Rovera, Christophe Salomon, Philippe Laurent, Gesine Grosche, Osama Terra, Thomas Legero, Harald Schnatz, Stefan Weyers, Brett Altschul, and Theodor W. Hänsch. Precision measurement of the hydrogen 1S-2S frequency via a 920-km fiber link. Phys. Rev. Lett., Vol. 110, p. 230801, Jun 2013.

[52] C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie. A clock network for geodesy and fundamental science. Nat Commun, Vol. 7, p. 12443, August 2016.

[53] Olivier Lopez, Adil Haboucha, Fabien Kéfélian, Haifeng Jiang, Bruno Chanteau, Vin- cent Roncin, Christian Chardonnet, Anne Amy-Klein, and Giorgio Santarelli. Cas- caded multiplexed optical link on a telecommunication network for frequency dis- semination. Opt. Express, Vol. 18, No. 16, pp. 16849–16857, Aug 2010.

[54] O. Terra, G. Grosche, and H. Schnatz. Brillouin amplification in phase coherent trans- fer of optical frequencies over 480 km fiber. Opt. Express, Vol. 18, No. 15, pp. 16102– 16111, Jul 2010.

[55] 和田雅人. 時間周波数比較法に関する調査研究. 産総研計量標準報告, Vol. 9, No. 1, pp. 23–33, March 2014.

[56] 和田雅人. 時間周波数標準の比較技術. 計測と制御, Vol. 53, No. 10, pp. 949–956, 2014.

[57] O. Lopez, A. Amy-Klein, M. Lours, C. Chardonnet, and G. Santarelli. High-resolution microwave frequency dissemination on an 86-km urban optical link. Applied Physics B, Vol. 98, No. 4, pp. 723–727, 2010.

[58] M. Fujieda, M. Kumagai, and S. Nagano. Coherent microwave transfer over a 204-km telecom fiber link by a cascaded system. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 57, No. 1, pp. 168–174, jan 2010.

[59] N. R. Newbury, P. A. Williams, and W. C. Swann. Coherent transfer of an optical carrier over 251 km. Opt. Lett., Vol. 32, No. 21, pp. 3056–3058, Nov 2007.

[60] Olivier Lopez, Adil Haboucha, Bruno Chanteau, Christian Chardonnet, Anne Amy- Klein, and Giorgio Santarelli. Ultra-stable long distance optical frequency distribution using the internet fiber network. Opt. Express, Vol. 20, No. 21, pp. 23518–23526, Oct 2012.

[61] G. Grosche, O. Terra, K. Predehl, R. Holzwarth, B. Lipphardt, F. Vogt, U. Sterr, and H. Schnatz. Optical frequency transfer via 146 km fiber link with 10−19 relative accu- racy. Opt. Lett., Vol. 34, No. 15, pp. 2270–2272, Aug 2009.

[62] Mitsuru Musha, Feng-Lei Hong, Ken’ichi Nakagawa, and Ken ichi Ueda. Coherent optical frequency transfer over 50-km physical distance using a 120-km-long installed telecom fiber network. Opt. Express, Vol. 16, No. 21, pp. 16459–16466, Oct 2008.

[63] S. T. Dawkins, J. J. McFerran, and A. N. Luiten. Considerations on the measurement of the stability of oscillators with frequency counters. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 54, No. 5, pp. 918–925, 2007.

[64] Daniele Nicolodi, Berengere Argence, Wei Zhang, Rodolphe Le Targat, Giorgio Santarelli, and Yann Le Coq. Spectral purity transfer between optical wavelengths at the 10−18 level. Nat Photon, Vol. 8, No. 3, pp. 219–223, March 2014.

[65] Holly Leopardi, Josue Davila-Rodriguez, Franklyn Quinlan, Judith Olson, Jeff A. Sher- man, Scott A. Diddams, and Tara M. Fortier. Single-branch Er:fiber frequency comb for precision optical metrology with 10−18 fractional instability. Optica, Vol. 4, No. 8, pp. 879–885, Aug 2017.

[66] Noriaki Ohmae, Naoya Kuse, Martin E. Fermann, and Hidetoshi Katori. All- polarization-maintaining, single-port Er:fiber comb for high-stability comparison of optical lattice clocks. Applied Physics Express, Vol. 10, No. 6, p. 062503, 2017.

[67] Antoine Rolland, Peng Li, Naoya Kuse, Jie Jiang, Marco Cassinerio, Carsten Langrock, and Martin E. Fermann. Ultra-broadband dual-branch optical frequency comb with 10−18 instability. Optica, Vol. 5, No. 9, pp. 1070–1077, Sep 2018.

[68] Ken Kashiwagi, Yoshiaki Nakajima, Masato Wada, Sho Okubo, and Hajime Inaba. Multi-branch fiber comb with relative frequency uncertainty at 10−20 using fiber noise difference cancellation. Opt. Express, Vol. 26, No. 7, pp. 8831–8840, Apr 2018.

[69] D. W. Allan and J. A. Barnes. A modified "allan variance" with increased oscillator characterization ability. In Thirty Fifth Annual Frequency Control Symposium, pp. 470– 475, 1981.

[70] Nathan R. Newbury and William C. Swann. Low-noise fiber-laser frequency combs (invited). J. Opt. Soc. Am. B, Vol. 24, No. 8, pp. 1756–1770, Aug 2007.

[71] 稲場肇, 大久保章, 和田雅人. 光周波数コムの安定度向上と評価法. レーザー研究, Vol. 46, No. 2, pp. 61–66, 2018.

[72] Jörn Stenger, Harald Schnatz, Christian Tamm, and Harald R. Telle. Ultraprecise measurement of optical frequency ratios. Phys. Rev. Lett., Vol. 88, p. 073601, Feb 2002.

[73] 吉村和幸, 電子情報通信学会. 周波数と時間: 原子時計の基礎/原子時のしくみ. 電子情報通信学会, 1989.

[74] D. W. Allan. Statistics of atomic frequency standards. Proceedings of the IEEE, Vol. 54, No. 2, pp. 221–230, 1966.

[75] IEEE standard definitions of physical quantities for fundamental frequency and time metrology - random instabilities. IEEE Std 1139-1999, pp. 1–40, 1999.

[76] J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen, W. L. Smith, R. L. Sydnor, R. F. C. Vessot, and G. M. R. Winkler. Characteriza- tion of frequency stability. IEEE Transactions on Instrumentation and Measurement, Vol. IM-20, No. 2, pp. 105–120, 1971.

[77] Fabio Stefani, Olivier Lopez, Anthony Bercy, Won-Kyu Lee, Christian Chardonnet, Giorgio Santarelli, Paul-Eric Pottie, and Anne Amy-Klein. Tackling the limits of optical fiber links. J. Opt. Soc. Am. B, Vol. 32, No. 5, pp. 787–797, May 2015.

[78] K.H. Wanser. Fundamental phase noise limit in optical fibres due to temperature fluctuations. Electronics Letters, Vol. 28, No. 1, pp. 53–54, jan 1992.

[79] L.Z. Duan. Intrinsic thermal noise of optical fibres due to mechanical dissipation. Electronics Letters, Vol. 46, No. 22, p. 1515, 2010.

[80] Lingze Duan. General treatment of the thermal noises in optical fibers. Phys. Rev. A, Vol. 86, p. 023817, Aug 2012.

[81] Robert E. Bartolo, Alan B. Tveten, and Anthony Dandridge. Thermal phase noise measurements in optical fiber interferometers. IEEE Journal of Quantum Electronics, Vol. 48, No. 5, pp. 720–727, may 2012.

[82] Jing Dong, Junchao Huang, Tang Li, and Liang Liu. Observation of fundamental thermal noise in optical fibers down to infrasonic frequencies. Applied Physics Letters, Vol. 108, No. 2, p. 021108, jan 2016.

[83] F. Narbonneau, M. Lours, S. Bize, A. Clairon, G. Santarelli, O. Lopez, Ch. Daussy, A. Amy-Klein, and Ch. Chardonnet. High resolution frequency standard dissemina- tion via optical fiber metropolitan network. Review of Scientific Instruments, Vol. 77, No. 6, p. 064701, 2006.

[84] P. A. Williams, W. C. Swann, and N. R. Newbury. High-stability transfer of an optical frequency over long fiber-optic links. J. Opt. Soc. Am. B, Vol. 25, No. 8, pp. 1284–1293, Aug 2008.

[85] 和田雅人, 渡部謙一, 大久保章, 鈴山智也, 洪鋒雷, 雨宮正樹. 光キャリアを用いる高精度周波数比較システムの検討. 電気学会論文誌C(電子・情報・システム部門誌), Vol. 134, No. 4, pp. 526–533, 2014.

[86] Masato Wada, Ken-Ichi Watabe, Sho Okubo, Tomonari Suzuyama, Feng-Lei Hong, and Masaki Amemiya. A precise frequency comparison system using an optical carrier. Electronics and Communications in Japan, Vol. 98, No. 11, pp. 19–27, 2015.

[87] H. Katori. Spectroscopy of strontium atoms in the Lamb-Dicke confinement. Proceed- ings of the 6th Symposium on Frequency Standards and Metrology, pp. 323–330, 2002.

[88] Hans G. Dehmelt. Monoion oscillator as potential ultimate laser frequency standard. IEEE Transactions on Instrumentation and Measurement, Vol. IM-31, No. 2, pp. 83–87, jun 1982.

[89] S. Blatt, A. D. Ludlow, G. K. Campbell, J. W. Thomsen, T. Zelevinsky, M. M. Boyd, J. Ye, X. Baillard, M. Fouché, R. Le Targat, A. Brusch, P. Lemonde, M. Takamoto, F.-L. Hong, H. Katori, and V. V. Flambaum. New limits on coupling of fundamental constants to gravity using 87Sr optical lattice clocks. Phys. Rev. Lett., Vol. 100, p. 140801, Apr 2008.

[90] C. W. Chou, D. B. Hume, T. Rosenband, and D. J. Wineland. Optical clocks and relativity. Science, Vol. 329, No. 5999, pp. 1630–1633, 2010.

[91] A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Mi- randa, M. J. Martin, J. W. Thomsen, S. M. Foreman, Jun Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates. Sr lattice clock at 1 × 10−16 fractional uncertainty by remote optical evaluation with a Ca clock. Science, Vol. 319, No. 5871, pp. 1805–1808, 2008.

[92] O. Terra, G. Grosche, K. Predehl, R. Holzwarth, T. Legero, U. Sterr, B. Lipphardt, and H. Schnatz. Phase-coherent comparison of two optical frequency standards over 146 km using a telecommunication fiber link. Applied Physics B, Vol. 97, No. 3, pp. 541–551, 2009.

[93] Atsushi Yamaguchi, Miho Fujieda, Motohiro Kumagai, Hidekazu Hachisu, Shigeo Nagano, Ying Li, Tetsuya Ido, Tetsushi Takano, Masao Takamoto, and Hidetoshi Ka- tori. Direct comparison of distant optical lattice clocks at the 10−16 uncertainty. Applied Physics Express, Vol. 4, No. 8, p. 082203, 2011.

[94] 大久保章. 広帯域中赤外光源によるサブドップラー分解能分子分光と光周波数コムを用いた高精度周波数測定. PhD thesis, 慶應義塾大学, 2012.

[95] A. Imaoka and M. Kihara. Accurate time/frequency transfer method using bidi-rectional WDM transmission. Instrumentation and Measurement, IEEE Transactions on, Vol. 47, No. 2, pp. 537–542, 1998.

[96] Tomoya Akatsuka, Hitomi Ono, Keitaro Hayashida, Kuniya Araki, Masao Takamoto, Tetsushi Takano, and Hidetoshi Katori. 30-km-long optical fiber link at 1397 nm for frequency comparison between distant strontium optical lattice clocks. Japanese Journal of Applied Physics, Vol. 53, No. 3, p. 032801, feb 2014.

[97] M. Wada, S. Okubo, K. Kashiwagi, F.-L. Hong, K. Hosaka, and H. Inaba. Evaluation of fiber noise induced in ultrastable environments. IEEE Transactions on Instrumentation and Measurement, Vol. 68, No. 6, pp. 2246–2252, June 2019.

[98] Nils Nemitz, Takuya Ohkubo, Masao Takamoto, Ichiro Ushijima, Manoj Das, Noriaki Ohmae, and Hidetoshi Katori. Frequency ratio of Yb and Sr clocks with 5 × 10−17 uncertainty at 150 seconds averaging time. Nat Photon, Vol. 10, No. 4, pp. 258–261, April 2016.

[99] N. Huntemann, C. Sanner, B. Lipphardt, Chr. Tamm, and E. Peik. Single-ion atomic clock with 3 × 10−18 systematic uncertainty. Phys. Rev. Lett., Vol. 116, p. 063001, Feb 2016.

[100] B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist. Visible lasers with subhertz linewidths. Phys. Rev. Lett., Vol. 82, pp. 3799–3802, May 1999.

[101] S. A. Webster, M. Oxborrow, S. Pugla, J. Millo, and P. Gill. Thermal-noise-limited optical cavity. Phys. Rev. A, Vol. 77, p. 033847, Mar 2008.

[102] Uwe Sterr and Christian Lisdat. A sharper laser. Nature Physics, Vol. 5, No. 6, pp. 382–383, jun 2009.

[103] T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye. A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity. Nature Photonics, Vol. 6, No. 10, pp. 687–692, October 2012.

[104] D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr. 1.5 µm lasers with sub-10 mHz linewidth. Phys. Rev. Lett., Vol. 118, p. 263202, Jun 2017.

[105] R. M. Godun, P. B. R. Nisbet-Jones, J. M. Jones, S. A. King, L. A. M. Johnson, H. S. Margolis, K. Szymaniec, S. N. Lea, K. Bongs, and P. Gill. Frequency ratio of two op- tical clock transitions in 171Yb+ and constraints on the time variation of fundamental constants. Phys. Rev. Lett., Vol. 113, p. 210801, Nov 2014.

[106] 稲場肇, 大苗敦, 洪鋒雷. 通信の大容量化に対応する「長さ」の国家標準. Synthesiology, Vol. 7, No. 2, pp. 68–80, 2014.

[107] 稲場肇, 和田雅人. 精度の飛躍-光周波数コム-「長さの国家標準」光周波数コム=メートルの定義の変遷と光コム=. 光アライアンス, Vol. 29, No. 2, pp. 5–11, 2018.

[108] Yoshiaki Nakajima, Hajime Inaba, Kazumoto Hosaka, Kaoru Minoshima, Atsushi Onae, Masami Yasuda, Takuya Kohno, Sakae Kawato, Takao Kobayashi, Toshio Kat- suyama, and Feng-Lei Hong. A multi-branch, fiber-based frequency comb with millihertz-level relative linewidths using an intra-cavity electro-optic modulator. Opt. Express, Vol. 18, No. 2, pp. 1667–1676, Jan 2010.

[109] Kana Iwakuni, Hajime Inaba, Yoshiaki Nakajima, Takumi Kobayashi, Kazumoto Hosaka, Atsushi Onae, and Feng-Lei Hong. Narrow linewidth comb realized with a mode-locked fiber laser using an intra-cavity waveguide electro-optic modulator for high-speed control. Opt. Express, Vol. 20, No. 13, pp. 13769–13776, Jun 2012.

[110] Hajime Inaba, Kazumoto Hosaka, Masami Yasuda, Yoshiaki Nakajima, Kana Iwakuni, Daisuke Akamatsu, Sho Okubo, Takuya Kohno, Atsushi Onae, and Feng-Lei Hong. Spectroscopy of 171Yb in an optical lattice based on laser linewidth transfer using a narrow linewidth frequency comb. Opt. Express, Vol. 21, No. 7, pp. 7891–7896, Apr 2013.

[111] Daisuke Akamatsu, Masami Yasuda, Hajime Inaba, Kazumoto Hosaka, Takehiko Tan- abe, Atsushi Onae, and Feng-Lei Hong. Frequency ratio measurement of 171Yb and 87Sr optical lattice clocks. Opt. Express, Vol. 22, No. 7, pp. 7898–7905, Apr 2014.

[112] 稲場肇, 大久保章, 中嶋善晶, 和田雅人. 光コムの周波数安定度の追求 (特集光コムによる知的光シンセサイザと応用展開). Optronics : 光技術コーディネートジャーナル, Vol. 36, No. 10, pp. 87–93, oct 2017.

[113] 稲場肇, 大久保章, 和田雅人, 中村圭佑, 柏木謙, 清水祐公子, 大苗敦. 光コムの高性能化と応用. レーザー研究, Vol. 46, No. 7, pp. 362–369, 2018.

[114] C. Hagemann, C. Grebing, T. Kessler, S. Falke, N. Lemke, C. Lisdat, H. Schnatz, F. Riehle, and U. Sterr. Providing 10−16 short-term stability of a 1.5-µm laser to optical clocks. IEEE Transactions on Instrumentation and Measurement, Vol. 62, No. 6, pp. 1556– 1562, 2013.

[115] L A M Johnson, P Gill, and H S Margolis. Evaluating the performance of the NPL femtosecond frequency combs: agreement at the 10−21 level. Metrologia, Vol. 52, No. 1, p. 62, 2015.

[116] Yuan Yao, Yanyi Jiang, Hongfu Yu, Zhiyi Bi, and Longsheng Ma. Optical frequency divider with division uncertainty at the 10−21 level. National Science Review, Vol. 3, No. 4, pp. 463–469, 2016.

[117] Terry G. McRae, Silvie Ngo, Daniel A. Shaddock, Magnus T. L. Hsu, and Malcolm B. Gray. Frequency stabilization for space-based missions using optical fiber interferom- etry. Optics Letters, Vol. 38, No. 3, p. 278, jan 2013.

[118] K. Hosaka, H. Inaba, Y. Nakajima, M. Yasuda, T. Kohno, A. Onae, and Feng-Lei Hong. Evaluation of the clock laser for an Yb lattice clock using an optic fiber comb. Ul- trasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, Vol. 57, No. 3, pp. 606–612, March 2010.

[119] Kazumoto Hosaka, Hajime Inaba, Daisuke Akamatsu, Masami Yasuda, Jun Sugawara, Atsushi Onae, and Feng-Lei Hong. A Fabry-Pérot etalon with an ultralow expansion ceramic spacer. Japanese Journal of Applied Physics, Vol. 52, No. 3R, p. 032402, 2013.

[120] T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist. Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place. Science, Vol. 319, No. 5871, pp. 1808–1812, 2008.

[121] Masao Takamoto, Feng-Lei Hong, Ryoichi Higashi, and Hidetoshi Katori. An optical lattice clock. Nature, Vol. 435, No. 7040, pp. 321–324, may 2005.

[122] B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye. An optical lattice clock with accuracy and stability at the 10−18 level. Nature, Vol. 506, No. 7486, pp. 71–75, February 2014.

[123] Kensuke Matsubara, Hidekazu Hachisu, Ying Li, Shigeo Nagano, Clayton Locke, Asahiko Nogami, Masatoshi Kajita, Kazuhiro Hayasaka, Tetsuya Ido, and Mizuhiko Hosokawa. Direct comparison of a Ca+ single-ion clock against a Sr lattice clock to verify the absolute frequency measurement. Optics Express, Vol. 20, No. 20, p. 22034, sep 2012.

[124] Y. Huang, H. Guan, P. Liu, W. Bian, L. Ma, K. Liang, T. Li, and K. Gao. Frequency comparison of two 40Ca+ optical clocks with an uncertainty at the 10−17 level. Phys. Rev. Lett., Vol. 116, p. 013001, Jan 2016.

[125] David J. Jones, Scott A. Diddams, Jinendra K. Ranka, Andrew Stentz, Robert S. Windeler, John L. Hall, and Steven T. Cundiff. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science, Vol. 288, No. 5466, pp. 635–639, 2000.

[126] Th. Udem, R. Holzwarth, and T. W. Hänsch. Optical frequency metrology. Nature, Vol. 416, No. 6877, pp. 233–237, March 2002.

[127] Naoki Kuramoto, Shigeki Mizushima, Lulu Zhang, Kazuaki Fujita, Yasushi Azuma, Akira Kurokawa, Sho Okubo, Hajime Inaba, and Kenichi Fujii. Determination of the Avogadro constant by the XRCD method using a 28Si-enriched sphere. Metrologia, Vol. 54, No. 5, pp. 716–729, aug 2017.

[128] Kaoru Minoshima and Hirokazu Matsumoto. High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser. Applied Optics, Vol. 39, No. 30, p. 5512, oct 2000.

[129] Lora Nugent-Glandorf, Todd A. Johnson, Yohei Kobayashi, and Scott A. Diddams. Impact of dispersion on amplitude and frequency noise in a Yb-fiber laser comb. Optics Letters, Vol. 36, No. 9, p. 1578, apr 2011.

[130] L. C. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Bau- mann, N. R. Newbury, and I. Coddington. Invited article: A compact optically co- herent fiber frequency comb. Review of Scientific Instruments, Vol. 86, No. 8, p. 081301, 2015.

[131] Mark Notcutt, Long-Sheng Ma, Jun Ye, and John L. Hall. Simple and compact 1-Hz laser system via an improved mounting configuration of a reference cavity. Optics Letters, Vol. 30, No. 14, p. 1815, jul 2005.

[132] W. C. Swann, J. J. McFerran, I. Coddington, N. R. Newbury, I. Hartl, M. E. Fermann, P. S. Westbrook, J. W. Nicholson, K. S. Feder, C. Langrock, and M. M. Fejer. Fiber-laser frequency combs with subhertz relative linewidths. Optics Letters, Vol. 31, No. 20, p. 3046, sep 2006.

[133] Su Fang, Haiqin Chen, Tianyin Wang, Yanyi Jiang, Zhiyi Bi, and Longsheng Ma. Optical frequency comb with an absolute linewidth of 0.6 Hz–1.2 Hz over an octave spectrum. Applied Physics Letters, Vol. 102, No. 23, p. 231118, jun 2013.

[134] Peter Fritschel, Thomas J. Kane, and Andrew Jeffries. Frequency fluctuations of a diode-pumped Nd:YAG ring laser. Optics Letters, Vol. 14, No. 18, p. 993, sep 1989.

[135] Yuh-Jen Cheng, P.L. Mussche, and A.E. Siegman. Measurement of laser quantum frequency fluctuations using a Pound-Drever stabilization system. IEEE Journal of Quantum Electronics, Vol. 30, No. 6, pp. 1498–1504, jun 1994.

[136] Nicola Coluccelli, Marco Cassinerio, Alessio Gambetta, Paolo Laporta, and Gianluca Galzerano. Frequency-noise measurements of optical frequency combs by multiple fringe-side discriminator. Scientific Reports, Vol. 5, No. 1, p. 16338, November 2015.

[137] T. Okoshi, K. Kikuchi, and A. Nakayama. Novel method for high resolution measure- ment of laser output spectrum. Electronics Letters, Vol. 16, No. 16, pp. 630–631, July 1980.

[138] O. Llopis, P. H. Merrer, H. Brahimi, K. Saleh, and P. Lacroix. Phase noise measurement of a narrow linewidth CW laser using delay line approaches. Opt. Lett., Vol. 36, No. 14, pp. 2713–2715, Jul 2011.

[139] Ying T. Chen. Use of single-mode optical fiber in the stabilization of laser frequency. Appl. Opt., Vol. 28, No. 11, pp. 2017–2021, Jun 1989.

[140] Benjamin S. Sheard, Malcolm B. Gray, and David E. McClelland. High-bandwidth laser frequency stabilization to a fiber-optic delay line. Appl. Opt., Vol. 45, No. 33, pp. 8491–8499, Nov 2006.

[141] K Takahashi, M Ando, and K Tsubono. Stabilization of laser intensity and frequency using optical fiber. Journal of Physics: Conference Series, Vol. 122, No. 1, p. 012016, 2008.

[142] Fabien Kéfélian, Haifeng Jiang, Pierre Lemonde, and Giorgio Santarelli. Ultralow-frequency-noise stabilization of a laser by locking to an optical fiber-delay line. Opt. Lett., Vol. 34, No. 7, pp. 914–916, Apr 2009.

[143] Jing Dong, Yongqi Hu, Junchao Huang, Meifeng Ye, Qiuzhi Qu, Tang Li, and Liang Liu. Subhertz linewidth laser by locking to a fiber delay line. Appl. Opt., Vol. 54, No. 5, pp. 1152–1156, Feb 2015.

[144] Dawei Li, Cheng Qian, Ye Li, and Jianye Zhao. Efficient laser noise reduction method via actively stabilized optical delay line. Opt. Express, Vol. 25, No. 8, pp. 9071–9077, Apr 2017.

[145] Lingke Wang, Yifei Duan, Meifeng Ye, Liang Liu, Tang Li, Yafeng Huang, and Junchao Huang. All-fiber-based laser with 200 mHz linewidth. Chinese Optics Letters, Vol. 17, No. 11, p. 071407, 7 2019.

[146] Eric Numkam Fokoua, Marco N. Petrovich, Tom Bradley, Francesco Poletti, David J. Richardson, and Radan Slavík. How to make the propagation time through an optical fiber fully insensitive to temperature variations. Optica, Vol. 4, No. 6, p. 659, jun 2017.

[147] W. Zhu, E. R. Numkam Fokoua, Y. Chen, T. Bradley, M. N. Petrovich, F. Poletti, M. Zhao, D. J. Richardson, and R. Slavík. Temperature insensitive fiber interferometry. Optics Letters, Vol. 44, No. 11, p. 2768, may 2019.

[148] R. Slavík, E. R. Numkam Fokoua, M. Bukshtab, Y. Chen, T. D. Bradley, S. R. San- doghchi, M. N. Petrovich, F. Poletti, and D. J. Richardson. Demonstration of opposing thermal sensitivities in hollow-core fibers with open and sealed ends. Optics Letters, Vol. 44, No. 17, p. 4367, aug 2019.

[149] Dohyeon Kwon, Chan-Gi Jeon, Junho Shin, Myoung-Sun Heo, Sang Eon Park, Youjian Song, and Jungwon Kim. Reference-free, high-resolution measurement method of timing jitter spectra of optical frequency combs. Scientific Reports, Vol. 7, p. 40917, January 2017.

[150] Kwangyun Jung and Jungwon Kim. All-fibre photonic signal generator for attosecond timing and ultralow-noise microwave. Scientific Reports, Vol. 5, p. 16250, November 2015.

[151] Dohyeon Kwon and Jungwon Kim. All-fiber interferometer-based repetition-rate sta- bilization of mode-locked lasers to 10−14-level frequency instability and 1-fs-level jitter over 1 s. Opt. Lett., Vol. 42, No. 24, pp. 5186–5189, Dec 2017.

[152] Haochen Tian, Wenkai Yang, Dohyeon Kwon, Runmin Li, Yuwei Zhao, Jungwon Kim, Youjian Song, and Minglie Hu. Optical frequency comb noise spectra analysis using an asymmetric fiber delay line interferometer. Optics Express, Vol. 28, No. 7, p. 9232, mar 2020.

[153] S. Yanagimachi, K. Watabe, T. Ikegami, H. Iida, and Y. Shimada. Uncertainty evalua- tion of 100-dBc/Hz flat phase noise standard at 10 MHz. Instrumentation and Measure-ment, IEEE Transactions on, Vol. 62, No. 6, pp. 1545–1549, 2013.

[154] P. Salzenstein and T.Y. Wu. Uncertainty analysis for a phase-detector based phase noise measurement system. Measurement, Vol. 85, pp. 118 – 123, 2016.

[155] T. R. Schibli, K. Minoshima, F.-L. Hong, H. Inaba, A. Onae, H. Matsumoto, I. Hartl, and M. E. Fermann. Frequency metrology with a turnkey all-fiber system. Optics Letters, Vol. 29, No. 21, p. 2467, nov 2004.

[156] A. D. Kersey, M. J. Marrone, and M. A. Davis. Polarisation-insensitive fibre optic Michelson interferometer. Electronics Letters, Vol. 27, No. 6, pp. 518–520, 1991.

[157] Wataru Kokuyama, Hideaki Nozato, Akihiro Ohta, and Koichiro Hattori. Simple dig- ital phase-measuring algorithm for low-noise heterodyne interferometry. Measurement Science and Technology, Vol. 27, No. 8, p. 085001, jun 2016.

[158] W. Kokuyama, S. Okubo, M. Wada, K. Nakamura, and H. Inaba. Time-domain phase noise measurement in the optical frequency region. In 2016 Conference on Precision Electromagnetic Measurements (CPEM 2016), pp. 1–2, July 2016.

[159] F. L. Walls, D. B. Percival, and W. R. Irelan. Biases and variances of several FFT spectral estimators as a function of noise type and number of samples. In Proceedings of the 43rd Annual Symposium on Frequency Control, pp. 336–341, 1989.

[160] Xiaopeng Xie, Romain Bouchand, Daniele Nicolodi, Michel Lours, Christophe Alexan- dre, and Yann Le Coq. Phase noise characterization of sub-hertz linewidth lasers via digital cross correlation. Optics Letters, Vol. 42, No. 7, p. 1217, mar 2017.

[161] Joint Committee for Guides in Metrology. JCGM 100: Evaluation of measurement data - guide to the expression of uncertainty in measurement. Technical report, JCGM, 2008.

[162] 今井秀孝(編). 測定における不確かさの表現のガイド [GUM] ハンドブック. 測定における不確かさの表現のガイド. 日本規格協会, 2018.

[163] 日本電気計器検定所. はじめて学ぶ「測定の不確かさ」.

[164] 日本電気計器検定所. 計測管理と不確かさ.

[165] Rafal Wilk, Thomas Hochrein, Martin Koch, Michael Mei, and Ronald Holzwarth. Terahertz spectrometer operation by laser repetition frequency tuning. J. Opt. Soc. Am. B, Vol. 28, No. 4, pp. 592–595, Apr 2011.

[166] Yoshiaki Nakajima and Kaoru Minoshima. Highly stabilized optical frequency comb interferometer with a long fiber-based reference path towards arbitrary distance mea- surement. Opt. Express, Vol. 23, No. 20, pp. 25979–25987, Oct 2015.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る