リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A facile combinatorial approach to construct a ratiometric fluorescent sensor: application for the real-time sensing of cellular pH changes.」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A facile combinatorial approach to construct a ratiometric fluorescent sensor: application for the real-time sensing of cellular pH changes.

Nakata, Eiji Hirose, Hisaaki Gerelbaatar, Khongorzul Arafiles, Jan Vincent V. Zhang, Zhengxiao Futaki, Shiroh Morii, Takashi 京都大学 DOI:10.1039/d1sc01575c

2021.06

概要

Realtime monitoring of the cellular environment, such as the intracellular pH, in a defined cellular space provides a comprehensive understanding of the dynamics processes in a living cell. Considering the limitation of spatial resolution in conventional microscopy measurements, multiple types of fluorophores assembled within that space would behave as a single fluorescent probe molecule. Such a character of microscopic measurements enables a much more flexible combinatorial design strategy in developing fluorescent probes for given targets. Nanomaterials with sizes smaller than the microscopy spatial resolution provide a scaffold to assemble several types of fluorophores with a variety of optical characteristics, therefore providing a convenient strategy for designing fluorescent pH sensors. In this study, fluorescein (CF) and tetramethylrhodamine (CR) were assembled on a DNA nanostructure with controlling the number of each type of fluorophore. By taking advantage of the different responses of CF and CR emissions to the pH environment, an appropriate assembly of both CF and CR on DNA origami enabled a controlled intensity of fluorescence emission and ratiometric pH monitoring within the space defined by DNA origami. The CF and CR-assembled DNA origami was successfully applied for monitoring the intracellular pH changes.

この論文で使われている画像

参考文献

1 A. L. Lehninger, D. L. Nelson and M. M. Cox, Lehninger

principles of biochemistry, Worth Publishers, New York, 2000.

2 Proteomic and metabolomic approaches to biomarker discovery,

ed. H. Issaq, Academic Press, London, 2013.

3 M. C. Brahimi-Horn and J. Pouyss´

egur, FEBS Lett., 2007, 581,

3582–3591.

4 J. R. Casey, S. Grinstein and J. Orlowski, Nat. Rev. Mol. Cell

Biol., 2010, 11, 50–61.

5 X. Zhang, Y. Lin and R. J. Gillies, J. Nucl. Med., 2010, 51,

1167–1170.

6 M. Karnebogen, D. Singer, M. Kallerhoff and R. H. Ringert,

Thermochim. Acta, 1993, 229, 147–155.

7 A. Sigaeva, Y. Ong, V. G. Damle, A. Morita, K. J. van der Laan

and R. Schirhagl, Acc. Chem. Res., 2019, 52, 1739–1749.

8 L. D. Lavis and R. T. Raines, ACS Chem. Biol., 2008, 3, 142–

155.

9 H. Kobayashi, M. Ogawa, R. Alford, P. L. Choyke and

Y. Urano, Chem. Rev., 2010, 110, 2620–2640.

10 T. Ueno and T. Nagano, Nat. Methods, 2011, 8, 642–645.

11 J. Chan, S. C. Dodani and C. J. Chang, Nat. Chem., 2012, 4,

973–984.

12 T. Terai and T. Nagano, P¨

ugers Archiv: European Journal of

Physiology, 2013, 465, 347–359.

13 A. T. Aron, K. M. Ramos-Torres, J. A. Cotruvo and C. J. Chang,

Acc. Chem. Res., 2015, 48, 2434–2442.

14 J. V. Jun, D. M. Chenoweth and E. J. Petersson, Org. Biomol.

Chem., 2020, 18, 5747–5763.

15 J. Han and K. Burgess, Chem. Rev., 2010, 110, 2709–2728.

16 Y. Yue, F. Huo, S. Lee, C. Yin and J. Yoon, Analyst, 2017, 142,

30–41.

17 J. T. Hou, W. X. Ren, K. Li, J. Seo, A. Sharma, X. Q. Yu and

J. S. Kim, Chem. Soc. Rev., 2017, 46, 2076–2090.

18 M. Shamsipur, A. Barati and Z. Nematifar, J. Photochem.

Photobiol., C, 2019, 39, 76–141.

19 A. Steinegger, O. S. Woleis and S. M. Borisov, Chem. Rev.,

2020, 120, 12357–12489.

20 K. Kikuchi, H. Takakusa and T. Nagano, TrAC, Trends Anal.

Chem., 2004, 23, 407–415.

21 A. P. Demchenko, Anal. Biochem., 2005, 343, 1–22.

22 J. Young, Work. U. S. A., 2003, 7, 100–102.

23 H. Wang, E. Nakata and I. Hamachi, ChemBioChem, 2009, 10,

2560–2577.

24 T. Doussineau, A. Schulz, A. Lapresta-Fernandez, A. Moro,

S. K¨

orsten, S. Trupp and G. J. Mohr, Chem.–Eur. J., 2010,

16, 10290–10299.

25 A. P. Demchenko, J. Fluoresc., 2010, 20, 1099–1128.

26 L. Yuan, W. Lin, K. Zheng and S. Zhu, Acc. Chem. Res., 2013,

46, 1462–1473.

27 X. Huang, J. Song, B. C. Yung, X. Huang, Y. Xiong and

X. Chen, Chem. Soc. Rev., 2018, 47, 2873–2920.

Chem. Sci., 2021, 12, 8231–8240 | 8239

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Open Access Article. Published on 08 May 2021. Downloaded on 6/1/2022 6:19:07 AM.

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Chemical Science

28 L. D. Lavis, Annu. Rev. Biochem., 2017, 86, 825–843.

29 E. Abbe, Beitr¨

age zur Theor. des Mikroskops und der

mikroskopischen Wahrnehmung, Arch. Mikrosk. Anat.,

1873, 9, 413–420.

30 S. W. Hell, Nat. Biotechnol., 2003, 21, 1347–1355.

31 S. W. Hell, Nat. Methods, 2009, 6, 24–32.

32 O. S. Woleis, Chem. Soc. Rev., 2015, 44, 4743–4768.

33 J. L. Kolanowski, F. Liu and E. J. New, Chem. Soc. Rev., 2018,

47, 195–208.

34 P. Reineck and B. C. Gibson, Adv. Opt. Mater., 2017, 5,

1600446.

35 P. W. K. Rothemund, Nature, 2006, 440, 297–302.

36 V. Linko, S. Nummelin, L. Aarnos, K. Tapio, J. Toppari and

M. Kostiainen, Nanomaterials, 2016, 6, 139.

37 A. Rajendran, M. Endo and H. Sugiyama, Angew. Chem., Int.

Ed., 2012, 51, 874–890.

38 A. Rajendran, E. Nakata, S. Nakano and T. Morii,

ChemBioChem, 2017, 18, 696–716.

39 T. A. Ngo, H. Dinh, T. M. Nguyen, F. F. Liew, E. Nakata and

T. Morii, Chem. Commun., 2019, 55, 12428–12466.

40 C. Lin, R. Jungmann, A. M. Leifer, C. Li, D. Levner,

G. M. Church, W. M. Shih and P. Yin, Nat. Chem., 2012, 4,

832–839.

41 J. B. Woehrstein, M. T. Strauss, L. L. Ong, B. Wei,

D. Y. Zhang, R. Jungmann and P. Yin, Sci. Adv., 2017, 3,

18–26.

42 S. L. Schmid and S. D. Conner, Nature, 2003, 422, 37–44.

43 T. Tørring, N. V Voigt, J. Nangreave, H. Yan and K. V Gothelf,

Chem. Soc. Rev., 2011, 40, 5636–5646.

44 J. V. V. Arales, H. Hirose, M. Akishiba, S. Tsuji, M. Imanishi

and S. Futaki, Bioconjugate Chem., 2020, 31, 547–553.

45 A. S. Desai, M. R. Hunter and A. N. Kapustin, Philos. Trans. R.

Soc., B, 2019, 374, 20180156.

8240 | Chem. Sci., 2021, 12, 8231–8240

View Article Online

Edge Article

46 L. Li, T. Wan, M. Wan, B. Liu, R. Cheng and R. Zhang, Cell

Biol. Int., 2015, 39, 531–539.

47 S. Weiss, Proc. Natl. Acad. Sci. U. S. A., 2000, 97, 8747–8749.

48 A. Ora, E. J¨

arvihaavisto, H. Zhang, H. Auvinen, H. A. Santos,

M. A. Kostiainen and V. Linko, Chem. Commun., 2016, 52,

14161–14164.

49 X. Shen, Q. Jiang, J. Wang, L. Dai, G. Zou, Z. G. Wang,

W. Q. Chen, W. Jiang and B. Ding, Chem. Commun., 2012,

48, 11301–11303.

50 D. Balakrishnan, G. D. Wilkens and J. G. Heddle,

Nanomedicine, 2019, 14, 911–925.

51 P. Wang, T. A. Meyer, V. Pan, P. K. Dutta and Y. Ke, Chem,

2017, 2, 359–382.

52 A. Udomprasert and T. Kangsamaksin, Cancer Sci., 2017,

108, 1535–1543.

53 A. H. Okholm, J. S. Nielsen, M. Vinther, R. S. Sørensen,

D. Schaffert and J. Kjems, Methods, 2014, 67, 193–197.

54 J. K. Kiviaho, V. Linko, A. Ora, T. Tiainen, E. J¨

arvihaavisto,

J. Mikkil¨

a, H. Tenhu, Nonappa and M. A. Kostiainen,

Nanoscale, 2016, 8, 11674–11680.

55 S. Ramakrishnan, H. Ij¨

as, V. Linko and A. Keller, Comput.

Struct. Biotechnol. J., 2018, 16, 342–349.

56 D. Wang, Z. Da, B. Zhang, M. A. Isbell, Y. Dong, X. Zhou,

H. Liu, J. Y. Y. Heng and Z. Yang, RSC Adv., 2015, 5,

58734–58737.

57 N. Wu and I. Willner, Nano Lett., 2016, 16, 6650–6655.

58 S. Modi, M. G. Swetha, D. Goswami, G. D. Gupta, S. Mayor

and Y. Krishnan, Nat. Nanotechnol., 2009, 4, 325–330.

59 I. Canton and G. Battaglia, Chem. Soc. Rev., 2012, 41, 2718–

2739.

60 V. Weissig, Liposomes: methods and protocols. Volume 1,

Humana Press, Totowa, N.J., 2010, vol. 1.

© 2021 The Author(s). Published by the Royal Society of Chemistry

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る