リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Development of fast-dissociating recombinant antibodies for high-density multiplexed IRIS super-resolution microscopy」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Development of fast-dissociating recombinant antibodies for high-density multiplexed IRIS super-resolution microscopy

Zhang, Qianli 京都大学 DOI:10.14989/doctor.k24304

2022.11.24

概要

Single-molecule localization super-resolution microscopy (SMLM) has greatly surpassed the diffraction limit of conventional optical microscopy. The imaging fidelity, however, is limited by the labeling density of antibodies. Image reconstruction by integrating exchangeable single-molecule localization (IRIS), which uses exchangeable probes that transiently bind to endogenous targets , overcomes the problem. Generation of fast-dissociating IRIS probes has been challenging in the previous studies. Because the number of available antibodies is expanding rapidly, generating recombinant probes from existing antibody sequences may greatly expand the usability of IRIS, but such an approach would require an efficient strategy to accelerate the dissociation of the antibody-target interaction without compromising the binding specificity.

 In this study, the applicant found that mutagenesis at the base of complementarity determining region (CDR) loops may effectively accelerate dissociation of antibodies without loss of binding specificity. The amino acids at these sites are conserved and often occupied by tyrosine residues, which play dominant roles in mediating molecular contacts. By combining multiple site- directed mutagenesis at these conserved sites, a versatile strategy that can rapidly convert the existing antibody cDNAs to fast-dissociating fluorescent probes for IRIS multiplexed super-resolution imaging was developed.

 The applicant successfully generated dozens of fast-dissociating antibody- derived IRIS probes and demonstrate multiplexed localization of endogenous proteins in primary neurons that visualizes synaptic connections as small as ~0.1 μm. The average binding events of IRIS probes against Homer and VGLUT in individual synapse were 694 and 3798, respectively. Because the number of Homer and VGLUT molecules in a synapse are reported to be 233 and 8254, approximately 95% of Homer and 37% of VGLUT molecules were estimated to be labeled at least once.

 In addition, the applicant shows evidence of the spatial interference between multiple antibodies in small synapse areas, which could give rise to sparse labeling in conventional SMLM such as stochastic optical reconstruction microscopy (STORM) and DNA-based point accumulation for imaging in nanoscale topography (DNA-PAINT). Fast-dissociating IRIS probes do not suffer from this problem. Furthermore, multiple localization points may arise from repeated detection of a single label in STORM and DNA-PAINT. IRIS thus achieves higher label density than conventional super-resolution approaches, and visualizes features of synaptic components with higher fidelity.

この論文で使われている画像

参考文献

1 Rust, M. J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3, 793-795 (2006). https://doi.org:10.1038/nmeth929

2 Abbe, E. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Archiv für mikroskopische Anatomie 9, 413-418 (1873). https://doi.org:10.1007/bf02956173

3 Hell, S. W. Far-field optical nanoscopy. Science 316, 1153-1158 (2007). https://doi.org:10.1126/science.1137395

4 Heintzmann, R. & Huser, T. Super-Resolution Structured Illumination Microscopy. Chem Rev 117, 13890-13908 (2017). https://doi.org:10.1021/acs.chemrev.7b00218

5 Lelek, M. et al. Single-molecule localization microscopy. Nat Rev Methods Primers 1 (2021). https://doi.org:10.1038/s43586-021-00038-x

6 Kiuchi, T., Higuchi, M., Takamura, A., Maruoka, M. & Watanabe, N. Multitarget super-resolution microscopy with high-density labeling by exchangeable probes. Nat Methods 12, 743-746 (2015). https://doi.org:10.1038/nmeth.3466

7 Shroff, H., Galbraith, C. G., Galbraith, J. A. & Betzig, E. Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nat Methods 5, 417-423 (2008). https://doi.org:10.1038/nmeth.1202

8 Miyoshi, T. et al. Semi-automated single-molecule microscopy screening of fast-dissociating specific antibodies directly from hybridoma cultures. Cell Rep 34, 108708 (2021). https://doi.org:10.1016/j.celrep.2021.108708

9 Vallet-Courbin, A. et al. A Recombinant Human Anti-Platelet scFv Antibody Produced in Pichia pastoris for Atheroma Targeting. PLoS One 12, e0170305 (2017). https://doi.org:10.1371/journal.pone.0170305

10 Ill, C. R. et al. Design and construction of a hybrid immunoglobulin domain with properties of both heavy and light chain variable regions. Protein Engineering, Design and Selection 10, 949-957 (1997). https://doi.org:10.1093/protein/10.8.949

11 Sela-Culang, I., Kunik, V. & Ofran, Y. The structural basis of antibody-antigen recognition. Front Immunol 4, 302 (2013). https://doi.org:10.3389/fimmu.2013.00302

12 Lehmann, A. et al. Stability engineering of anti-EGFR scFv antibodies by rational design of a lambda- to-kappa swap of the VL framework using a structure-guided approach. MAbs 7, 1058-1071 (2015). https://doi.org:10.1080/19420862.2015.1088618

13 Kang, T. H. & Seong, B. L. Solubility, Stability, and Avidity of Recombinant Antibody Fragments Expressed in Microorganisms. Front Microbiol 11, 1927 (2020). https://doi.org:10.3389/fmicb.2020.01927

14 Arimori, T. et al. Fv-clasp: An Artificially Designed Small Antibody Fragment with Improved Production Compatibility, Stability, and Crystallizability. Structure 25, 1611-1622 e1614 (2017). https://doi.org:10.1016/j.str.2017.08.011

15 Watson, J. F., Pinggera, A., Ho, H. & Greger, I. H. AMPA receptor anchoring at CA1 synapses is determined by N-terminal domain and TARP γ8 interactions. Nat Commun 12, 5083 (2021). https://doi.org:10.1038/s41467-021-25281-4

16 Watanabe, N. & Mitchison, T. J. Single-molecule speckle analysis of actin filament turnover in lamellipodia. Science 295, 1083-1086 (2002). https://doi.org:10.1126/science.1067470

17 Yamashiro, S. et al. New single-molecule speckle microscopy reveals modification of the retrograde actin flow by focal adhesions at nanometer scales. Mol Biol Cell 25, 1010-1024 (2014). https://doi.org:10.1091/mbc.E13-03-0162

18 Zhou, H., Fisher, R. J. & Papas, T. S. Optimization of primer sequences for mouse scFv repertoire display library construction. Nucleic Acids Res 22, 888-889 (1994). https://doi.org:10.1093/nar/22.5.888

19 Ikeda, K. et al. Generation and characterization of a human-mouse chimeric high-affinity antibody that detects the DYKDDDDK FLAG peptide. Biochem Biophys Res Commun 486, 1077-1082 (2017). https://doi.org:10.1016/j.bbrc.2017.03.165

20 Götzke, H. et al. The ALFA-tag is a highly versatile tool for nanobody-based bioscience applications. Nat Commun 10, 4403 (2019). https://doi.org:10.1038/s41467-019-12301-7

21 Dong, J. X. et al. A toolbox of nanobodies developed and validated for use as intrabodies and nanoscale immunolabels in mammalian brain neurons. Elife 8 (2019). https://doi.org:10.7554/eLife.48750

22 Schenck, S. et al. Generation and Characterization of Anti-VGLUT Nanobodies Acting as Inhibitors of Transport. Biochemistry 56, 3962-3971 (2017). https://doi.org:10.1021/acs.biochem.7b00436

23 Suzuki, J. et al. Imaging intraorganellar Ca2+ at subcellular resolution using CEPIA. Nat Commun 5, 4153 (2014). https://doi.org:10.1038/ncomms5153

24 Al-Lazikani, B., Lesk, A. M. & Chothia, C. Standard conformations for the canonical structures of immunoglobulins. J Mol Biol 273, 927-948 (1997). https://doi.org:10.1006/jmbi.1997.1354

25 Dunbar, J. & Deane, C. M. ANARCI: antigen receptor numbering and receptor classification. Bioinformatics 32, 298-300 (2016). https://doi.org:10.1093/bioinformatics/btv552

26 Sircar, A., Sanni, K. A., Shi, J. & Gray, J. J. Analysis and modeling of the variable region of camelid single-domain antibodies. J Immunol 186, 6357-6367 (2011). https://doi.org:10.4049/jimmunol.1100116

27 Zhou, R., Han, B., Xia, C. & Zhuang, X. Membrane-associated periodic skeleton is a signaling platform for RTK transactivation in neurons. Science 365, 929-934 (2019). https://doi.org:10.1126/science.aaw5937

28 Xu, K., Zhong, G. & Zhuang, X. Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science 339, 452-456 (2013). https://doi.org:10.1126/science.1232251

29 Shi, X., Lim, J. & Ha, T. Acidification of the oxygen scavenging system in single-molecule fluorescence studies: in situ sensing with a ratiometric dual-emission probe. Anal Chem 82, 6132-6138 (2010). https://doi.org:10.1021/ac1008749

30 Blumhardt, P. et al. Photo-Induced Depletion of Binding Sites in DNA-PAINT Microscopy. Molecules 23 (2018). https://doi.org:10.3390/molecules23123165

31 Olivier, N., Keller, D., Gönczy, P. & Manley, S. Resolution doubling in 3D-STORM imaging through improved buffers. PLoS One 8, e69004 (2013). https://doi.org:10.1371/journal.pone.0069004

32 Descloux, A., Grußmayer, K. S. & Radenovic, A. Parameter-free image resolution estimation based on decorrelation analysis. Nat Methods 16, 918-924 (2019). https://doi.org:10.1038/s41592-019-0515-7

33 Kuglin, C. D. & Hines, D. C. The phase correlation image alignment method. Proc. Int. Conf. on Cybernetics and Society, 1975, 163-165 (1975).

34 Tabata, S. et al. A rapid screening method for cell lines producing singly-tagged recombinant proteins using the "TARGET tag" system. J Proteomics 73, 1777-1785 (2010). https://doi.org:10.1016/j.jprot.2010.05.012

35 Zimmermann, K., Hoischen, S., Hafner, M. & Nischt, R. Genomic Sequences and Structural Organization of the Human Nidogen Gene (NID). Genomics 27, 245-250 (1995). https://doi.org:https://doi.org/10.1006/geno.1995.1038

36 Schymeinsky, J. et al. Gene structure and functional analysis of the mouse nidogen-2 gene: nidogen-2 is not essential for basement membrane formation in mice. Mol Cell Biol 22, 6820-6830 (2002). https://doi.org:10.1128/mcb.22.19.6820-6830.2002

37 Suzuki, J. et al. Imaging intraorganellar Ca2+ at subcellular resolution using CEPIA. Nature Communications 5, 4153 (2014). https://doi.org:10.1038/ncomms5153 https://www.nature.com/articles/ncomms5153#supplementary-information

38 Borden, P. & Kabat, E. A. Nucleotide sequence of the cDNAs encoding the variable region heavy and light chains of a myeloma protein specific for the terminal nonreducing end of alpha(1 6)dextran. Proc Natl Acad Sci U S A 84, 2440-2443 (1987). https://doi.org:10.1073/pnas.84.8.2440

39 Krause, K.-H. & Michalak, M. Calreticulin. Cell 88, 439-443 (1997). https://doi.org:10.1016/S0092- 8674(00)81884-X

40 Fujii, Y. et al. PA tag: a versatile protein tagging system using a super high affinity antibody against a dodecapeptide derived from human podoplanin. Protein Expr Purif 95, 240-247 (2014). https://doi.org:10.1016/j.pep.2014.01.009

41 Koide, S. & Sidhu, S. S. The importance of being tyrosine: lessons in molecular recognition from minimalist synthetic binding proteins. ACS Chem Biol 4, 325-334 (2009). https://doi.org:10.1021/cb800314v

42 Tsumoto, K. et al. Role of Tyr Residues in the Contact Region of Anti-lysozyme Monoclonal Antibody HyHEL10 for Antigen Binding. Journal of Biological Chemistry 270, 18551-18557 (1995). https://doi.org:10.1074/jbc.270.31.18551

43 Sela-Culang, I., Kunik, V. & Ofran, Y. The structural basis of antibody-antigen recognition. Frontiers in immunology 4, 302-302 (2013). https://doi.org:10.3389/fimmu.2013.00302

44 Haidar, J. N. et al. A universal combinatorial design of antibody framework to graft distinct CDR sequences: a bioinformatics approach. Proteins 80, 896-912 (2012). https://doi.org:10.1002/prot.23246

45 Betapudi, V. Myosin II motor proteins with different functions determine the fate of lamellipodia extension during cell spreading. PLoS One 5, e8560 (2010). https://doi.org:10.1371/journal.pone.0008560

46 Tojkander, S. et al. A molecular pathway for myosin II recruitment to stress fibers. Curr Biol 21, 539- 550 (2011). https://doi.org:10.1016/j.cub.2011.03.007

47 Burnette, D. T. et al. A contractile and counterbalancing adhesion system controls the 3D shape of crawling cells. J Cell Biol 205, 83-96 (2014). https://doi.org:10.1083/jcb.201311104

48 Thul, P. J. et al. A subcellular map of the human proteome. Science 356 (2017). https://doi.org:10.1126/science.aal3321

49 Andrews, N. P. et al. A toolbox of IgG subclass-switched recombinant monoclonal antibodies for enhanced multiplex immunolabeling of brain. Elife 8 (2019). https://doi.org:10.7554/eLife.43322

50 Ye, X. & Cai, Q. Snapin-mediated BACE1 retrograde transport is essential for its degradation in lysosomes and regulation of APP processing in neurons. Cell Rep 6, 24-31 (2014). https://doi.org:10.1016/j.celrep.2013.12.008

51 Ilardi, J. M., Mochida, S. & Sheng, Z. H. Snapin: a SNARE-associated protein implicated in synaptic transmission. Nat Neurosci 2, 119-124 (1999). https://doi.org:10.1038/5673

52 Sidenstein, S. C. et al. Multicolour Multilevel STED nanoscopy of Actin/Spectrin Organization at Synapses. Sci Rep 6, 26725 (2016). https://doi.org:10.1038/srep26725

53 Wilhelm, B. G. et al. Composition of isolated synaptic boutons reveals the amounts of vesicle trafficking proteins. Science 344, 1023-1028 (2014). https://doi.org:10.1126/science.1252884

54 Sugiyama, Y., Kawabata, I., Sobue, K. & Okabe, S. Determination of absolute protein numbers in single synapses by a GFP-based calibration technique. Nat Methods 2, 677-684 (2005). https://doi.org:10.1038/nmeth783

55 Dani, A., Huang, B., Bergan, J., Dulac, C. & Zhuang, X. Superresolution imaging of chemical synapses in the brain. Neuron 68, 843-856 (2010). https://doi.org:10.1016/j.neuron.2010.11.021

56 Tao-Cheng, J. H., Azzam, R., Crocker, V., Winters, C. A. & Reese, T. Depolarization of Hippocampal Neurons Induces Formation of Nonsynaptic NMDA Receptor Islands Resembling Nascent Postsynaptic Densities. eNeuro 2 (2015). https://doi.org:10.1523/ENEURO.0066-15.2015

57 van de Linde, S. et al. Direct stochastic optical reconstruction microscopy with standard fluorescent probes. Nat Protoc 6, 991-1009 (2011). https://doi.org:10.1038/nprot.2011.336

58 Sograte-Idrissi, S. et al. Circumvention of common labelling artefacts using secondary nanobodies. Nanoscale 12, 10226-10239 (2020). https://doi.org:10.1039/d0nr00227e

59 Huang, B., Bates, M. & Zhuang, X. Super-resolution fluorescence microscopy. Annu Rev Biochem 78, 993-1016 (2009). https://doi.org:10.1146/annurev.biochem.77.061906.092014

60 Jungmann, R. et al. Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT. Nat Methods 11, 313-318 (2014). https://doi.org:10.1038/nmeth.2835

61 Agasti, S. S. et al. DNA-barcoded labeling probes for highly multiplexed Exchange-PAINT imaging. Chem Sci 8, 3080-3091 (2017). https://doi.org:10.1039/c6sc05420j

62 Klevanski, M. et al. Automated highly multiplexed super-resolution imaging of protein nano- architecture in cells and tissues. Nat Commun 11, 1552 (2020). https://doi.org:10.1038/s41467-020-15362-1

63 Guo, S. M. et al. Multiplexed and high-throughput neuronal fluorescence imaging with diffusible probes. Nat Commun 10, 4377 (2019). https://doi.org:10.1038/s41467-019-12372-6

64 Gunasekara, H., Munaweera, R. & Hu, Y. S. Chaotropic Perturbation of Noncovalent Interactions of the Hemagglutinin Tag Monoclonal Antibody Fragment Enables Superresolution Molecular Census. ACS Nano (2021). https://doi.org:10.1021/acsnano.1c04237

65 Dunbar, J. et al. SAbDab: the structural antibody database. Nucleic Acids Res 42, D1140-1146 (2014). https://doi.org:10.1093/nar/gkt1043

66 Lima, W. C. et al. The ABCD database: a repository for chemically defined antibodies. Nucleic Acids Res 48, D261-D264 (2020). https://doi.org:10.1093/nar/gkz714

67 Tanaka, T., Thomas, J., Van Montfort, R., Miller, A. & Rabbitts, T. Pan RAS-binding compounds selected from a chemical library by inhibiting interaction between RAS and a reduced affinity intracellular antibody. Sci Rep 11, 1712 (2021). https://doi.org:10.1038/s41598-021-81262-z

68 Yamashita, T. et al. Affinity Improvement of a Cancer-Targeted Antibody through Alanine-Induced Adjustment of Antigen-Antibody Interface. Structure 27, 519-527.e515 (2019). https://doi.org:10.1016/j.str.2018.11.002

69 Clark, L. A. et al. Affinity enhancement of an in vivo matured therapeutic antibody using structure- based computational design. Protein Sci 15, 949-960 (2006). https://doi.org:10.1110/ps.052030506

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る