リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「c-Jun N-terminal kinaseの阻害が歯根膜幹細胞の骨芽細胞分化に及ぼす影響および歯周組織再生に及ぼす影響」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

c-Jun N-terminal kinaseの阻害が歯根膜幹細胞の骨芽細胞分化に及ぼす影響および歯周組織再生に及ぼす影響

兼子, 大志 KANEKO, Hiroshi カネコ, ヒロシ 九州大学

2022.03.23

概要

重度の根尖病変や歯周病などにより歯周組織の損傷が生じた場合、広範囲に及ぶ歯周組織の再生が必要となるが、その効率的な治療法は未だ十分には確立されていない。c-JunN-terminal kinase(JNK)は、細胞外からの物理化学的ストレスや炎症性サイトカインに応答して活性化されるプロテインキナーゼであり、増殖や分化、細胞死、炎症反応などを制御している。我々は過去に、Wnt5aによる歯根膜幹細胞(HPDLSCs)の骨芽細胞分化抑制にJNKが関与していることを明らかにした。また、JNKの阻害剤であるSP600125は、前骨芽細胞の骨芽細胞分化を促進することが報告されている。そこで本研究では、JNKの阻害がヒト歯根膜幹細胞の骨芽細胞分化に及ぼす影響、ならびに、歯周組織再生に及ぼす効果について検討することとした。

 SP600125含有の骨芽細胞分化誘導培地にてHPDLSCsを培養したところ、HPDLSCsにおける石灰化物形成および骨関連遺伝子群の発現が有意に上昇した。また、このJNK阻害による骨芽細胞分化促進に関与する細胞内シグナルについて解析を行った結果、SP600125によるJNK阻害により、Smad1/5/8のリン酸化反応およびBMP2発現が有意に上昇した。そこで、BMPレセプター阻害剤であるLDN193189により、HPDLSCsにおけるSmad1/5/8のリン酸化を阻害したところ、JNK阻害によって促進した石灰化物形成および骨関連遺伝子発現が有意に抑制された。さらに、ラット下顎骨に形成した歯周組織欠損部にSP600125含有コラーゲンスポンジを填入したところ、術後2週間後において、コントロール群と比較して欠損部における歯槽骨および歯根膜の修復が促進していた。

 以上の結果より、JNKの阻害は、Smad1/5/8シグナルを介してHPDLSCsの骨芽細胞分化を促進することが明らかになった。また、JNK阻害剤は歯周組織欠損部における歯槽骨および歯根膜の修復促進に作用することから、JNK阻害剤が歯周組織再生に効果的であることが示唆された。

参考文献

Bashutski, J. D., & Wang, H. L. (2009). Periodontal and endodontic regeneration. Journal of Endodontics, 35(3), 321–328. https://doi.org/10.1016/j.joen.2008.11.023

Beertsen, W., McCulloch, C. A., & Sodek, J. (1997). The periodontal ligament: a unique, multifunctional connective tissue. Periodontology 2000, 13, 20–40. https://doi.org/ 10.1111/j.1600-0757.1997.tb00094.x

Brent, A. E., Schweitzer, R., & Tabin, C. J. (2003). A somitic compartment of tendon progenitors. Cell, 113(2), 235–248. https://doi.org/10.1016/s0092-8674(03)00268- x

Chen, Y. R., Meyer, C. F., & Tan, T. H. (1996). Persistent activation of c-Jun N-terminal kinase 1 (JNK1) in gamma radiation-induced apoptosis. The Journal of Biological Chemistry, 271(2), 631–634. https://doi.org/10.1074/jbc.271.2.631

Davis, R. J. (2000). Signal transduction by the JNK group of MAP kinases. Cell, 103(2), 239–252. https://doi.org/10.1016/s0092-8674(00)00116-1

Freeman, E. (1994). Peridontium. In A. R. Ten Cate (Ed.), Oral Histology: Development, Structure, and Function (pp. 276–312). St. Louis: Mosby.

Fujii, M., Takeda, K., Imamura, T., Aoki, H., Sampath, T. K., Enomoto, S., … Miyazono, K. (1999). Roles of bone morphogenetic protein type I receptors and Smad proteins in osteoblast and chondroblast differentiation. Molecular Biology of the Cell, 10(11), 3801–3813. https://doi.org/10.1091/mbc.10.11.3801

Fujii, S., Maeda, H., Wada, N., Tomokiyo, A., Saito, M., & Akamine, A. (2008). Investigating a clonal human periodontal ligament progenitor/stem cell line in vitro and in vivo. Journal of Cellular Physiology, 215(3), 743–749. https://doi.org/ 10.1002/jcp.21359

Gautschi, O. P., Frey, S. P., & Zellweger, R. (2007). Bone morphogenetic proteins in clinical applications. ANZ Journal of Surgery, 77(8), 626–631. https://doi.org/ 10.1111/j.1445-2197.2007.04175.x

Ge, C., Xiao, G., Jiang, D., & Franceschi, R. T. (2007). Critical role of the extracellular signal-regulated kinase-MAPK pathway in osteoblast differentiation and skeletal development. The Journal of Cell Biology, 176(5), 709–718. https://doi.org/10.1083/ jcb.200610046

Graves, D. T., & Cochran, D. L. (1994). Periodontal regeneration with polypeptide growth factors. Current Opinion in Periodontology, 178–186.

Guo, C., Wang, S. L., Xu, S. T., Wang, J. G., & Song, G. H. (2015). SP600125 reduces lipopolysaccharide-induced apoptosis and restores the early-stage differentiation of osteoblasts inhibited by LPS through the MAPK pathway in MC3T3-E1 cells. International Journal of Molecular Medicine, 35(5), 1427–1434. https://doi.org/ 10.3892/ijmm.2015.2130

Guo, Y. L., Baysal, K., Kang, B., Yang, L. J., & Williamson, J. R. (1998). Correlation between sustained c-Jun N-terminal protein kinase activation and apoptosis induced by tumor necrosis factor-alpha in rat mesangial cells. The Journal of Biological Chemistry, 273(7), 4027–4034. https://doi.org/10.1074/jbc.273.7.4027

Hasegawa, D., Hasegawa, K., Kaneko, H., Yoshida, S., Mitarai, H., Arima, M., … Maeda, H. (2020). MEST regulates the stemness of human periodontal ligament stem cells. Stem Cells International, 2020, Article 9672673. https://doi.org/10.1155/ 2020/9672673

Hasegawa, D., Wada, N., Maeda, H., Yoshida, S., Mitarai, H., Tomokiyo, A., … Akamine, A. (2015). Wnt5a induces collagen production by human periodontal ligament cells through TGFβ1-mediated upregulation of periostin expression. Journal of Cellular Physiology, 230(11), 2647–2660. https://doi.org/10.1002/jcp.24950

Hasegawa, D., Wada, N., Yoshida, S., Mitarai, H., Arima, M., Tomokiyo, A., … Maeda, H. (2018). Wnt5a suppresses osteoblastic differentiation of human periodontal ligament stem cell-like cells via Ror2/JNK signaling. Journal of Cellular Physiology, 233(2), 1752–1762. https://doi.org/10.1002/jcp.26086

Horiuchi, K., Amizuka, N., Takeshita, S., Takamastu, H., Katsuura, M., Ozawa, H., … Kudo, A. (1999). Identification and characterization of a novel protein, periostin, with restricted expression to periosteum and periodontal ligament and increased expression by transforming growth factor beta. Journal of Bone and Mineral Research, 14(7), 1239–1249. https://doi.org/10.1359/jbmr.1999.14.7.1239

Huang, Y. F., Lin, J. J., Lin, C. H., Su, Y., & Hung, S. C. (2012). c-Jun N-terminal kinase 1 negatively regulates osteoblastic differentiation induced by BMP2 via phosphorylation of Runx2 at Ser104. Journal of Bone and Mineral Research, 27(5), 1093–1105. https://doi.org/10.1002/jbmr.1548

Ichiyama, K., Sekiya, T., Inoue, N., Tamiya, T., Kashiwagi, I., Kimura, A., … Yoshimura, A. (2011). Transcription factor Smad-independent T helper 17 cell induction by transforming-growth factor-β is mediated by suppression of eomesodermin. Immunity, 34(5), 741–754. https://doi.org/10.1016/j. immuni.2011.02.021

Iwasaki, K., Akazawa, K., Nagata, M., Komaki, M., Honda, I., Morioka, C., … Morita, I. (2019). The fate of transplanted periodontal ligament stem cells in surgically created periodontal defects in rats. International Journal of Molecular Sciences, 20(1), 192. https://doi.org/10.3390/ijms20010192

Kawai, S., Faucheu, C., Gallea, S., Spinella-Jaegle, S., Atfi, A., Baron, R., & Roman, S. R. (2000). Mouse smad8 phosphorylation downstream of BMP receptors ALK-2, ALK-3, and ALK-6 induces its association with Smad4 and transcriptional activity. Biochemical and Biophysical Research Communications, 271(3), 682–687. https://doi. org/10.1006/bbrc.2000.2704

King, G. N., King, N., Cruchley, A. T., Wozney, J. M., & Hughes, F. J. (1997). Recombinant human bone morphogenetic protein-2 promotes wound healing in rat periodontal fenestration defects. Journal of Dental Research, 76(8), 1460–1470. https://doi.org/10.1177/00220345970760080801

Kyriakis, J. M., & Avruch, J. (2001). Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiological Reviews, 81(2), 807–869. https://doi.org/10.1152/physrev.2001.81.2.807

Maeda, H., Wada, N., Nakamuta, H., & Akamine, A. (2004). Human periapical granulation tissue contains osteogenic cells. Cell and Tissue Research, 315(2), 203–208. https://doi.org/10.1007/s00441-003-0832-z

McKay, W. F., Peckham, S. M., & Badura, J. M. (2007). A comprehensive clinical review of recombinant human bone morphogenetic protein-2 (INFUSE Bone Graft). International Orthopaedics, 31(6), 729–734. https://doi.org/10.1007/s00264-007-0418-6

Miyazono, K., Maeda, S., & Imamura, T. (2005). BMP receptor signaling: transcriptional targets, regulation of signals, and signaling cross-talk. Cytokine & Growth Factor Reviews, 16(3), 251–263. https://doi.org/10.1016/j.cytogfr.2005.01.009

Murakami, S. (2011). Periodontal tissue regeneration by signaling molecule(s): what role does basic fibroblast growth factor (FGF-2) have in periodontal therapy? Periodontology 2000, 56(1), 188–208. https://doi.org/10.1111/j.1600- 0757.2010.00365.x

Murakami, S., Takayama, S., Kitamura, M., Shimabukuro, Y., Yanagi, K., & Ikezawa, K. (2003). Recombinant human basic fibroblast growth factor (bFGF) stimulates periodontal regeneration in class II furcation defects created in beagle dogs. Journal of Periodontal Research, 38(1), 97–103. https://doi.org/10.1034/j.1600- 0765.2003.00640.x

Nagata, M., Iwasaki, K., Akazawa, K., Komaki, M., Yokoyama, N., Izumi, Y., & Morita, I. (2017). Conditioned medium from periodontal ligament stem cells enhances periodontal regeneration. Tissue Engineering Part A, 23(9–10), 367–377. https://doi. org/10.1089/ten.TEA.2016.0274

Nakashima, K., Zhou, X., Kunkel, G., Zhang, Z., Deng, J. M., Behringer, R. R., & de Crombrugghe, B. (2002). The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell, 108(1), 17–29. https://doi.org/10.1016/s0092-8674(01)00622-5

Nishimura, R., Hata, K., Ikeda, F., Ichida, F., Shimoyama, A., Matsubara, T., … Yoneda, T. (2008). Signal transduction and transcriptional regulation during mesenchymal cell differentiation. Journal of Bone and Mineral Metabolism, 26(3), 203–212. https://doi.org/10.1007/s00774-007-0824-2

Nishimura, R., Kato, Y., Chen, D., Harris, S. E., Mundy, G. R., & Yoneda, T. (1998). Smad5 and DPC4 are key molecules in mediating BMP-2-induced osteoblastic differentiation of the pluripotent mesenchymal precursor cell line C2C12. The Journal of Biological Chemistry, 273(4), 1872–1879. https://doi.org/10.1074/ jbc.273.4.1872

Papadopoulou, A., Iliadi, A., Eliades, T., & Kletsas, D. (2017). Early responses of human periodontal ligament fibroblasts to cyclic and static mechanical stretching. European Journal of Orthodontics, 39(3), 258–263.

Po¨schke, A., Kra¨hling, B., Failing, K., & Staszyk, C. (2018). Molecular characteristics of the equine periodontal ligament. Frontiers in Veterinary Science, 11(4), 235. https:// doi.org/10.3389/fvets.2017.00235

Rath, B., Nam, J., Deschner, J., Schaumburger, J., Tingart, M., Gr¨assel, S., … Agarwal, S. (2011). Biomechanical forces exert anabolic effects on osteoblasts by activation of SMAD 1/5/8 through type 1 BMP receptor. Biorheology, 48(1), 37–48. https://doi. org/10.3233/BIR-2011-0580

Romanos, G. E., Asnani, K. P., Hingorani, D., & Deshmukh, V. L. (2013). PERIOSTIN: role in formation and maintenance of dental tissues. Journal of Cellular Physiology, 229 (5), 1–5. https://doi.org/10.1002/jcp.24491

Seino, M., Okada, M., Sakaki, H., Takeda, H., Watarai, H., Suzuki, S., … Kitanaka, C. (2016). Time-staggered inhibition of JNK effectively sensitizes chemoresistant ovarian cancer cells to cisplatin and paclitaxel. Oncology Reports, 35(1), 593–601. https://doi.org/10.3892/or.2015.4377

Seo, B. M., Miura, M., Gronthos, S., Bartold, P. M., Batouli, S., Brahim, J., … Shi, S. (2004). Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet, 364(9429), 149–155. https://doi.org/10.1016/S0140-6736(04)16627-0

Takayama, S., Murakami, S., Shimabukuro, Y., Kitamura, M., & Okada, H. (2001). Periodontal regeneration by FGF-2 (bFGF) in primate models. Journal of Dental Research, 80(12), 2075–2079. https://doi.org/10.1177/00220345010800121001

Wang, E. A. (1993). Bone morphogenetic proteins (BMPs): therapeutic potential in healing bony defects. Trends in Biotechnology, 11(9), 379–383. https://doi.org/ 10.1016/0167-7799(93)90096-R

Wang, M., Li, J., Ye, Y., He, S., & Song, J. (2020). SHED-derived conditioned exosomes enhance the osteogenic differentiation of PDLSCs via Wnt and BMP signaling in vitro. Differentiation, 111, 1–11. https://doi.org/10.1016/j.diff.2019.10.003

Weston, C. R., & Davis, R. J. (2002). The JNK signal transduction pathway. Current Opinion in Genetics & Development, 12(1), 14–21. https://doi.org/10.1016/s0959- 437x(01)00258-1

Woo, E. J. (2012). Adverse events reported after the use of recombinant human bone morphogenetic protein 2. Journal of Oral and Maxillofacial Surgery, 70(4), 765–767. https://doi.org/10.1016/j.joms.2011.09.008

Wu, D. T., Bitzer, M., Ju, W., Mundel, P., & Bo¨ttinger, E. P. (2005). TGF-beta concentration specifies differential signaling profiles of growth arrest/differentiation and apoptosis in podocytes. Journal of the American Society of Nephrology, 16(11), 3211–3221. https://doi.org/10.1681/ASN.2004121055

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る