リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Decorinはヒト歯根膜幹細胞の骨芽細胞分化能を促進する」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Decorinはヒト歯根膜幹細胞の骨芽細胞分化能を促進する

足立, 織利恵 ADACHI, Orie アダチ, オリエ 九州大学

2023.03.20

概要

九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Decorin Promotes Osteoblastic Differentiation
of Human Periodontal Ligament Stem Cells
足立, 織利恵

https://hdl.handle.net/2324/6787519
出版情報:Kyushu University, 2022, 博士(歯学), 課程博士
バージョン:
権利関係:© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open
access article distributed under the terms and conditions of the Creative Commons Attribution.

(様式3)





論 文 名

:足









: Decorin Promotes Osteoblastic Differentiation of Human Periodontal
Ligament Stem Cells
(Decorin はヒト歯根膜幹細胞の骨芽細胞分化能を促進する)





:甲















重度のう蝕、歯周炎、外傷によって生じる歯周組織の欠損は、歯の喪失を引き起こす。そのため、
歯根膜、骨、およびセメント質を含む歯周組織の治癒および再生を促す因子の同定が求められてい
る。Decorin(DCN)は、細胞外マトリックスの成分であるプロテオグリカンの一種で、コラーゲン
線維形成、創傷治癒、骨形成等に重要な働きを持つ分子であることが報告されている。しかしなが
ら、DCNが歯周組織再生に及ぼす影響については明らかにされていない。そこで本研究では、傷害さ
れた歯周組織の治癒過程におけるDCNの発現様式、およびDCNがヒト歯根膜幹細胞とヒト前骨芽細
胞の骨芽細胞分化に及ぼす影響について検討することとした。
歯周組織傷害部位におけるDCNの発現様式について検討するために、SDラット(5週齢、雄性)の上
顎左側第一臼歯口蓋側の歯根膜を含む歯周組織に直径2 mmの傷害を与え、傷害後1, 3, 5, 7, 14, 28
日の組織を観察した。免疫組織化学染色を行い、抗DCN抗体陽性領域を定量化した。その結果、傷害
部位近傍の歯根膜においては傷害後5日でControlと比較して抗DCN抗体の陽性領域が有意に増加し
たが、傷害部位近傍の歯槽骨においては抗DCN抗体の陽性領域に有意な差は認められなかった。次
に、DCNがヒト歯根膜幹細胞およびヒト前骨芽細胞の骨芽細胞分化に及ぼす影響について解析した
結果、DCNはヒト歯根膜幹細胞の骨芽細胞様分化を促進したが、ヒト前骨芽細胞の骨芽細胞分化に
は影響を与えなかった。さらに、DCNがヒト歯根膜幹細胞の骨芽細胞様分化を誘導する分子機構の
解析を行ったところ、DCNは骨芽細胞様分化を誘導されたヒト歯根膜幹細胞において、p-ERK1/2 の
タンパク発現を有意に亢進した。本研究の結果から、DCNは歯周組織治癒の初期において、傷害され
た歯根膜および歯槽骨の治癒に関与することが示唆された。さらに、DCNはヒト歯根膜幹細胞の骨
芽細胞様分化をERK1/2のリン酸化を介して促進することで、歯槽骨の再生に寄与することが示唆さ
れた。

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Polzer, I.; Schimmel, M.; Müller, F.; Biffar, R. Edentulism as part of the general health problems of elderly adults. Int. Dent. J. 2010,

60, 143–155. [PubMed]

Fleischmannova, J.; Matalova, E.; Sharpe, P.T.; Misek, I.; Radlanski, R.J. Formation of the tooth-bone interface. J. Dent. Res. 2010,

89, 108–115. [CrossRef] [PubMed]

Kim, M.G.; Park, C.H. Tooth-Supporting Hard Tissue Regeneration Using Biopolymeric Material Fabrication Strategies. Molecules

2020, 25, 4802. [CrossRef] [PubMed]

Tomokiyo, A.; Yoshida, S.; Hamano, S.; Hasegawa, D.; Sugii, H.; Maeda, H. Detection, Characterization, and Clinical Application

of Mesenchymal Stem Cells in Periodontal Ligament Tissue. Stem Cells Int. 2018, 2018, 5450768. [CrossRef]

Ouchi, T.; Nakagawa, T. Mesenchymal stem cell-based tissue regeneration therapies for periodontitis. Regen Ther. 2020, 14, 72–78.

[CrossRef]

Li, X.; Gong, P.; Liao, D. In vitro neural/glial differentiation potential of periodontal ligament stem cells. Arch. Med. Sci. 2010, 6,

678–685. [CrossRef]

Fujii, S.; Maeda, H.; Wada, N.; Tomokiyo, A.; Saito, M.; Akamine, A. Investigating a clonal human periodontal ligament

progenitor/stem cell line in vitro and in vivo. J. Cell Physiol. 2008, 215, 743–749. [CrossRef]

Jin, H.; Choung, H.W.; Lim, K.T.; Jin, B.; Jin, C.; Chung, J.H.; Choung, P.H. Recombinant Human Plasminogen Activator Inhibitor-1

Promotes Cementogenic Differentiation of Human Periodontal Ligament Stem Cells. Tissue Eng. Part A 2015, 21, 2817–2828.

[CrossRef]

Shi, S.; Bartold, P.M.; Miura, M.; Seo, B.M.; Robey, P.G.; Gronthos, S. The efficacy of mesenchymal stem cells to regenerate and

repair dental structures. Orthod. Craniofac. Res. 2005, 8, 191–199. [CrossRef]

Corsi, A.; Xu, T.; Chen, X.D.; Boyde, A.; Liang, J.; Mankani, M.; Sommer, B.; Iozzo, R.V.; Eichstetter, I.; Robey, P.G.; et al.

Phenotypic effects of biglycan deficiency are linked to collagen fibril abnormalities, are synergized by decorin deficiency, and

mimic Ehlers-Danlos-like changes in bone and other connective tissues. J. Bone Miner. Res. 2002, 17, 1180–1189. [CrossRef]

Mohan, R.R.; Tovey, J.C.; Gupta, R.; Sharma, A.; Tandon, A. Decorin biology, expression, function and therapy in the cornea. Curr.

Mol. Med. 2011, 11, 110–128. [CrossRef] [PubMed]

Theocharis, A.D.; Karamanos, N.K. Decreased biglycan expression and differential decorin localization in human abdominal

aortic aneurysms. Atherosclerosis 2002, 165, 221–230. [CrossRef]

Järvinen, T.A.; Ruoslahti, E. Target-seeking antifibrotic compound enhances wound healing and suppresses scar formation in

mice. Proc. Natl. Acad. Sci. USA 2010, 107, 21671–21676. [CrossRef] [PubMed]

Danielson, K.G.; Baribault, H.; Holmes, D.F.; Graham, H.; Kadler, K.E.; Iozzo, R.V. Targeted disruption of decorin leads to

abnormal collagen fibril morphology and skin fragility. J. Cell Biol. 1997, 136, 729–743. [CrossRef] [PubMed]

Järvinen, T.A.; Ruoslahti, E. Targeted Antiscarring Therapy for Tissue Injuries. Adv. Wound Care (New Rochelle) 2013, 2, 50–54.

[CrossRef] [PubMed]

Merline, R.; Moreth, K.; Beckmann, J.; Nastase, M.V.; Zeng-Brouwers, J.; Tralhão, J.G.; Lemarchand, P.; Pfeilschifter, J.; Schaefer,

R.M.; Iozzo, R.V.; et al. Signaling by the matrix proteoglycan decorin controls inflammation and cancer through PDCD4 and

MicroRNA-21. Sci. Signal 2011, 4, ra75. [CrossRef]

Halari, C.D.; Renaud, S.J.; Lala, P.K. Molecular mechanisms in IL-1β-mediated decorin production by decidual cells. Mol. Hum.

Reprod. 2021, 27. [CrossRef]

Adam, M.; Urbanski, H.F.; Garyfallou, V.T.; Welsch, U.; Köhn, F.M.; Ullrich Schwarzer, J.; Strauss, L.; Poutanen, M.; Mayerhofer, A.

High levels of the extracellular matrix proteoglycan decorin are associated with inhibition of testicular function. Int. J. Androl.

2012, 35, 550–561. [CrossRef]

Nikitovic, D.; Aggelidakis, J.; Young, M.F.; Iozzo, R.V.; Karamanos, N.K.; Tzanakakis, G.N. The biology of small leucine-rich

proteoglycans in bone pathophysiology. J. Biol. Chem. 2012, 287, 33926–33933. [CrossRef]

Devlin, H. Early bone healing events following rat molar tooth extraction. Cells Tissues Organs 2000, 167, 33–37. [CrossRef]

Molecules 2022, 27, 8224

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

15 of 16

He, R.; Lu, Y.; Ren, J.; Wang, Z.; Huang, J.; Zhu, L.; Wang, K. Decreased fibrous encapsulation and enhanced osseointegration

in vitro by decorin-modified titanium surface. Colloids Surf. B Biointerfaces 2017, 155, 17–24. [CrossRef] [PubMed]

Hill, L.J.; Moakes, R.J.A.; Vareechon, C.; Butt, G.; Ng, A.; Brock, K.; Chouhan, G.; Vincent, R.C.; Abbondante, S.; Williams, R.L.;

et al. Sustained release of decorin to the surface of the eye enables scarless corneal regeneration. NPJ Regen. Med. 2018, 3, 23.

[CrossRef] [PubMed]

Ahmed, Z.; Bansal, D.; Tizzard, K.; Surey, S.; Esmaeili, M.; Gonzalez, A.M.; Berry, M.; Logan, A. Decorin blocks scarring and

cystic cavitation in acute and induces scar dissolution in chronic spinal cord wounds. Neurobiol. Dis. 2014, 64, 163–176. [CrossRef]

[PubMed]

Wang, P.; Liu, X.; Xu, P.; Lu, J.; Wang, R.; Mu, W. Decorin reduces hypertrophic scarring through inhibition of the TGF-β1/Smad

signaling pathway in a rat osteomyelitis model. Exp. Ther. Med. 2016, 12, 2102–2108. [CrossRef] [PubMed]

Han, X.G.; Wang, D.K.; Gao, F.; Liu, R.H.; Bi, Z.G. Bone morphogenetic protein 2 and decorin expression in old fracture fragments

and surrounding tissues. Genet. Mol. Res. 2015, 14, 11063–11072. [CrossRef]

Cheng, H.; Caterson, B.; Yamauchi, M. Identification and immunolocalization of chondroitin sulfate proteoglycans in tooth

cementum. Connect Tissue Res. 1999, 40, 37–47. [CrossRef] [PubMed]

Robey, P.G. Vertebrate mineralized matrix proteins: Structure and function. Connect Tissue Res. 1996, 35, 131–136. [CrossRef]

Häkkinen, L.; Oksala, O.; Salo, T.; Rahemtulla, F.; Larjava, H. Immunohistochemical localization of proteoglycans in human

periodontium. J. Histochem. Cytochem. 1993, 41, 1689–1699. [CrossRef]

Hosiriluck, N.; Kashio, H.; Takada, A.; Mizuguchi, I.; Arakawa, T. The profiling and analysis of gene expression in human

periodontal ligament tissue and fibroblasts. Clin. Exp. Dent. Res. 2022, 8, 658–672. [CrossRef]

Matheson, S.; Larjava, H.; Häkkinen, L. Distinctive localization and function for lumican, fibromodulin and decorin to regulate

collagen fibril organization in periodontal tissues. J. Periodontal. Res. 2005, 40, 312–324. [CrossRef]

Häkkinen, L.; Strassburger, S.; Kähäri, V.M.; Scott, P.G.; Eichstetter, I.; Lozzo, R.V.; Larjava, H. A role for decorin in the structural

organization of periodontal ligament. Lab Invest. 2000, 80, 1869–1880. [CrossRef] [PubMed]

Sugii, H.; Maeda, H.; Tomokiyo, A.; Yamamoto, N.; Wada, N.; Koori, K.; Hasegawa, D.; Hamano, S.; Yuda, A.; Monnouchi, S.; et al.

Effects of Activin A on the phenotypic properties of human periodontal ligament cells. Bone 2014, 66, 62–71. [CrossRef] [PubMed]

Yoshida, S.; Yamamoto, N.; Wada, N.; Tomokiyo, A.; Hasegawa, D.; Hamano, S.; Mitarai, H.; Monnouchi, S.; Yuda, A.; Maeda, H.

GDNF From Human Periodontal Ligament Cells Treated With Pro-Inflammatory Cytokines Promotes Neurocytic Differentiation

of PC12 Cells. J. Cell Biochem. 2017, 118, 699–708. [CrossRef]

Lin, J.M.; Yamauchi, M.; Sato, S. Effects of recombinant interleukin-1 beta on decorin gene expression in human periodontal

ligament fibroblast and its possible transcriptional regulation. J. Periodontal. Res. 1997, 32, 225–232. [CrossRef] [PubMed]

Hu, X.; Villodre, E.S.; Larson, R.; Rahal, O.M.; Wang, X.; Gong, Y.; Song, J.; Krishnamurthy, S.; Ueno, N.T.; Tripathy, D.; et al.

Decorin-mediated suppression of tumorigenesis, invasion, and metastasis in inflammatory breast cancer. Commun. Biol. 2021, 4,

72. [CrossRef] [PubMed]

Santra, M.; Santra, S.; Zhang, J.; Chopp, M. Ectopic decorin expression up-regulates VEGF expression in mouse cerebral

endothelial cells via activation of the transcription factors Sp1, HIF1alpha, and Stat3. J. Neurochem. 2008, 105, 324–337. [CrossRef]

Suzuki, K.; Kishioka, Y.; Wakamatsu, J.; Nishimura, T. Decorin activates Akt downstream of IGF-IR and promotes myoblast

differentiation. Anim. Sci. J. 2013, 84, 669–674. [CrossRef]

Singer, A.J.; Clark, R.A. Cutaneous wound healing. N. Engl. J. Med. 1999, 341, 738–746. [CrossRef]

Cho, T.J.; Gerstenfeld, L.C.; Einhorn, T.A. Differential temporal expression of members of the transforming growth factor beta

superfamily during murine fracture healing. J. Bone Miner. Res. 2002, 17, 513–520. [CrossRef]

Maruyama, M.; Rhee, C.; Utsunomiya, T.; Zhang, N.; Ueno, M.; Yao, Z.; Goodman, S.B. Modulation of the Inflammatory Response

and Bone Healing. Front. Endocrinol. (Lausanne) 2020, 11, 386. [CrossRef]

Itoyama, T.; Yoshida, S.; Tomokiyo, A.; Hasegawa, D.; Hamano, S.; Sugii, H.; Ono, T.; Fujino, S.; Maeda, H. Possible function of

GDNF and Schwann cells in wound healing of periodontal tissue. J. Periodontal. Res. 2020, 55, 830–839. [CrossRef] [PubMed]

Beertsen, W.; McCulloch, C.A.; Sodek, J. The periodontal ligament: A unique, multifunctional connective tissue. Periodontol 2000

1997, 13, 20–40. [CrossRef] [PubMed]

Lekic, P.; McCulloch, C.A. Periodontal ligament cell population: The central role of fibroblasts in creating a unique tissue. Anat.

Rec. 1996, 245, 327–341. [CrossRef]

Seo, B.M.; Miura, M.; Gronthos, S.; Bartold, P.M.; Batouli, S.; Brahim, J.; Young, M.; Robey, P.G.; Wang, C.Y.; Shi, S. Investigation of

multipotent postnatal stem cells from human periodontal ligament. Lancet 2004, 364, 149–155. [CrossRef] [PubMed]

Randilini, A.; Fujikawa, K.; Shibata, S. An in situ hybridization study of decorin and biglycan mRNA in mouse osteoblasts in vivo.

Anat. Sci. Int. 2021, 96, 265–272. [CrossRef]

Nemani, N.; Santo, L.; Eda, H.; Cirstea, D.; Mishima, Y.; Patel, C.; O’Donnell, E.; Yee, A.; Raje, N. Role of decorin in multiple

myeloma (MM) bone marrow microenvironment. J. Bone Miner. Res. 2015, 30, 465–470. [CrossRef] [PubMed]

Waddington, R.J.; Roberts, H.C.; Sugars, R.V.; Schönherr, E. Differential roles for small leucine-rich proteoglycans in bone

formation. Eur. Cell Mater. 2003, 6, 12–21, discussion 21. [CrossRef]

Yu, Y.; Mu, J.; Fan, Z.; Lei, G.; Yan, M.; Wang, S.; Tang, C.; Wang, Z.; Yu, J.; Zhang, G. Insulin-like growth factor 1 enhances

the proliferation and osteogenic differentiation of human periodontal ligament stem cells via ERK and JNK MAPK pathways.

Histochem Cell Biol. 2012, 137, 513–525. [CrossRef]

Molecules 2022, 27, 8224

49.

50.

51.

52.

53.

54.

55.

56.

57.

16 of 16

Weinreb, M.; Nemcovsky, C.E. In vitro models for evaluation of periodontal wound healing/regeneration. Periodontol 2000 2015,

68, 41–54. [CrossRef]

Zhou, L.; Jing, J.; Wang, H.; Wu, X.; Lu, Z. Decorin promotes proliferation and migration of ORS keratinocytes and maintains hair

anagen in mice. Exp. Dermatol. 2018, 27, 1237–1244. [CrossRef]

Xu, G.; Guimond, M.J.; Chakraborty, C.; Lala, P.K. Control of proliferation, migration, and invasiveness of human extravillous

trophoblast by decorin, a decidual product. Biol. Reprod. 2002, 67, 681–689. [CrossRef] [PubMed]

Du, S.; Wang, S.; Wu, Q.; Hu, J.; Li, T. Decorin inhibits angiogenic potential of choroid-retinal endothelial cells by downregulating

hypoxia-induced Met, Rac1, HIF-1α and VEGF expression in cocultured retinal pigment epithelial cells. Exp. Eye Res. 2013, 116,

151–160. [CrossRef] [PubMed]

Hasegawa, D.; Wada, N.; Yoshida, S.; Mitarai, H.; Arima, M.; Tomokiyo, A.; Hamano, S.; Sugii, H.; Maeda, H. Wnt5a suppresses

osteoblastic differentiation of human periodontal ligament stem cell-like cells via Ror2/JNK signaling. J. Cell Physiol. 2018, 233,

1752–1762. [CrossRef]

D’Antoni, M.L.; Torregiani, C.; Ferraro, P.; Michoud, M.C.; Mazer, B.; Martin, J.G.; Ludwig, M.S. Effects of decorin and biglycan

on human airway smooth muscle cell proliferation and apoptosis. Am. J. Physiol. Lung Cell Mol. Physiol. 2008, 294, L764–L771.

[CrossRef] [PubMed]

Yoshino, O.; Izumi, G.; Shi, J.; Osuga, Y.; Hirota, Y.; Hirata, T.; Harada, M.; Nishii, O.; Koga, K.; Taketani, Y. Activin-A is induced

by interleukin-1β and tumor necrosis factor-α and enhances the mRNA expression of interleukin-6 and protease-activated

receptor-2 and proliferation of stromal cells from endometrioma. Fertil. Steril 2011, 96, 118–121. [CrossRef] [PubMed]

Arima, M.; Hasegawa, D.; Yoshida, S.; Mitarai, H.; Tomokiyo, A.; Hamano, S.; Sugii, H.; Wada, N.; Maeda, H. R-spondin

2 promotes osteoblastic differentiation of immature human periodontal ligament cells through the Wnt/β-catenin signaling

pathway. J. Periodontal. Res. 2019, 54, 143–153. [CrossRef]

Sugii, H.; Albougha, M.S.; Adachi, O.; Tomita, H.; Tomokiyo, A.; Hamano, S.; Hasegawa, D.; Yoshida, S.; Itoyama, T.; Maeda, H.

Activin A Promotes Osteoblastic Differentiation of Human Preosteoblasts through the ALK1-Smad1/5/9 Pathway. Int. J. Mol. Sci.

2021, 22, 3491. [CrossRef]

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る