リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Insertion of ten amino acids into 13S globulin zero-repeat subunit improves trypsin digestibility in common buckwheat (Fagopyrum esculentum Moench) seeds」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Insertion of ten amino acids into 13S globulin zero-repeat subunit improves trypsin digestibility in common buckwheat (Fagopyrum esculentum Moench) seeds

Okada, Takeyuki Monshi, Fakhrul Islam Kudo, Syuto Katsube-Tanaka, Tomoyuki 京都大学 DOI:10.1016/j.fochms.2022.100159

2023.07

概要

The 13S globulin zero-repeat subunit is resistant to trypsin and may have higher allergenicity than the 1–6 tandem repeat subunits in common buckwheat (Fagopyrum esculentum Moench). To explore alleles useful for lowering allergenicity, amplicon deep sequencing targeting the zero-repeat subunit gene was conducted in bulked genomic DNA from eight cultivars and landraces. The analysis identified a unique allele encoding a zero-repeat subunit with 10 amino acid insertion (10aa) at a position equivalent to the tandem repeat insertion. Prediction of its 3-D structure suggested that 10aa changes the β-hairpin structure in the non-10aa (native) subunit to a random coil, which is also found in 1- and 3- repeat subunits. Homozygotes of the 10aa allele were developed and showed that the 10aa subunit was more digestible than the native subunit. However, the 10aa subunit was still less digestible than the 1–6 repeat subunits, suggesting needs to explore unfunctional alleles.

この論文で使われている画像

参考文献

Adachi, M., Kanamori, J., Masuda, T., Yagasaki, K., Kitamura, K., Mikami, B., & Utsumi,

S. (2003). Crystal structure of soybean 11S globulin: glycinin A3B4 homohexamer.

Proceedings of the National Academy of Sciences of the United States of America, 100

(12), 7395-7400. doi: 10.1073/pnas.0832158100.

Choi, S. M., Mine, Y., & Ma, C. Y. (2006). Characterization of heat-induced aggregates of

globulin from common buckwheat (Fagopyrum esculentum Moench). International

Journal of Biological Macromolecules, 39, 201–209. https://doi.org/10.1016/j.

ijbiomac.2006.03.025

Gim´enez-Bastida, J. A., & Zieli´

nski, H. (2015). Buckwheat as a functional food and its

effects on health. Journal of Agricultural Food Chemistry, 63, 7896–7913.

Heffler, E., Pizzimenti, S., Badiu, I., Guida, G., & Rolla, G. (2014). Buckwheat allergy: An

emerging clinical problem in Europe. Journal of Allergy & Therapy, 5, 2.

Huda, M. N., Lu, S., Jahan, T., Ding, M., Jha, R., Zhang, K., … Zhou, M. (2020). Treasure

from garden: Bioactive compounds of buckwheat. Food Chemistry, 335, Article

127653. https://doi.org/10.1016/j.foodchem.2020.127653

Jin, T., Guo, F., Chen, Y., Howard, A., & Zhang, Y. Z. (2009). Crystal structure of Ara h 3,

a major allergen in peanut. Molecular Immunology, 46, 1796–1804. https://doi.org/

10.1016/j.molimm.2009.01.023

Katayama, S., Yamaguchi, D., Suzuki, Y., Athamneh, A. M. A., Mitani, T., Satoh, R., …

Nakamura, S. (2018). Oral immunotherapy with a phosphorylated hypoallergenic

allergen ameliorates allergic responses more effectively than intact allergen in a

murine model of buckwheat allergy. Molecular Nutrition & Food Research, 62,

e1800303.

Katsube, T., Gidamis, A. B., Kanamori, J., Kang, I. J., Utsumi, S., & Kito, M. (1994).

Modification tolerability of the hypervariable region of soybean proglycinin. Journal

of Agricultural and Food Chemistry, 42, 2639–2645.

Katsube-Tanaka, T. (2016). Buckwheat production, consumption, and genetic resources

in Japan. In M. Zhou, I. Kreft, S. H. Woo, N. Chrungoo, & G. Wieslander (Eds.),

Molecular breeding and nutritional aspects of buckwheat (pp. 61–80). Amsterdam:

Elsevier.

Katsube-Tanaka, T., & Monshi, F. I. (2022). Characterization of 2S albumin allergenic

proteins for anaphylaxis in common buckwheat. Food Chemistry: Molecular Sciences,

100127, doi.org/10.1016/j.fochms.2022.100127.

Katsube-Tanaka, T., Nakagawa, M., Sano, M., & Yasui, Y. (2014). Development of novel

common buckwheat (Fagopyrum esculentum M.) plants with lowered contents of

tandem repeat-less 13S globulin-Discrimination methods of the tandem repeat-less

genes. Journal of Crop Research, 59, 31–35. In Japanese with English abstract https://

doi.org/10.18964/jcr.59.0_31.

Kelley, L., Mezulis, S., Yates, C., Wass, M., & Sternberg, M. (2015). The Phyre2 web

portal for protein modeling, prediction and analysis. Nature protocols, 10, 845–858.

https://doi.org/10.1038/nprot.2015.053

Khan, N., Katsube-Tanaka, T., Iida, S., Yamaguchi, T., Nakano, J., & Tsujimoto, H.

(2008a). Diversity of rice glutelin polypeptides in wild species assessed by the

higher-temperature sodium dodecyl sulfate-polyacrylamide gel electrophoresis and

subunit-specific antibodies. Electrophoresis, 29, 1308–1316.

Khan, N., Katsube-Tanaka, T., Iida, S., Yamaguchi, T., Nakano, J., & Tsujimoto, H.

(2008b). Identification and variation of glutelin α polypeptides in the genus Oryza

assessed by two-dimensional electrophoresis and step-by-step immuno detection.

Journal of Agricultural and Food Chemistry, 56, 4955–4961.

Khan, N., Takahashi, Y., & Katsube-Tanaka, T. (2012). Tandem repeat inserts in 13S

globulin subunits, the major allergenic storage protein of common buckwheat

(Fagopyrum esculentum Moench) seeds. Food Chemistry, 133, 29–37.

Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of

bacteriophage T4. Nature, 227(5259), 680–685.

Fig. 5. Comparison in trypsin digestibility between the α polypeptides of

native and 10aa zero-repeat subunits. Globulin fractions extracted from 10aa

heterozygotes (A) and a mixture of 10aa homozygotes (10aa) and native sub­

units (Native) (B) were incubated with trypsin for 8 h. The digested samples

were analyzed by SDS-PAGE and western blotting, using anti-5rep and antiGlbNA antibodies. (A, B) Representative images of western blot data (α poly­

peptide of 13S globulin). Estimated molecular size is 28.3, 29.4, 33.5, 35.9,

37.4, 39.4, and 41.3 kDa for Native, 10aa, and 1–5 rep, respectively. (C) Time

course of trypsin digestion in the mixture of 10aa and native subunits. Asterisks

indicate significant differences between 10aa and Native at each incubation

time (Student’s t-test: * P < 0.05, ** P < 0.01, *** P < 0.001). n=6; error bars

represent SE.

5. Conclusion

13S globulin of common buckwheat is an important allergen in

buckwheat-sensitized patients. There is large variation in the molecular

size of the protein caused by the insertion of tandem repeats of various

lengths. As the tandem repeat is hydrophilic and contains many arginine

residues, 1–6 repeat subunits containing the tandem repeat are more

digestible with trypsin than zero-repeat subunits containing no tandem

repeats. In this study, we found a new zero-repeat subunit, which con­

tains additionally inserted ten amino acid residues (10aa) at the

equivalent position to the tandem repeat region by amplicon deep

sequencing. The 10aa subunit was predicted to possess no β-hairpin

structure, which was found in the zero-repeat (non-10aa, native) subunit

but not in the 1–6 repeat subunits. The 10aa subunit was more digestible

with trypsin than the non-10aa (native) subunit. However, the trypsin

digestibility of zero-repeat subunits, even the 10aa allele homozygote,

was still much lower than that of the 1–5 repeat subunits. Thus, another

new zero-repeat allele, for example, a non-functional allele, would be

required to develop hypoallergenic buckwheat.

T. Okada et al.

Food Chemistry: Molecular Sciences 6 (2023) 100159

Sano, M., Nakagawa, M., Oishi, A., Yasui, Y., & Katsube-Tanaka, T. (2014).

Diversification of 13S globulins, allergenic seed storage proteins, of common

buckwheat. Food Chemistry, 155, 192–198.

Utsumi, S., Katsube, T., Ishige, T., & Takaiwa, F. (1997). Molecular design of soybean

glycinins with enhanced food qualities and development of crops producing such

glycinins. In S. Damodaran, & A. Paraf (Eds.), Food proteins and lipids 1st edition (pp.

1–15). New York: Plenum Press.

Wieslander, G., & Norb¨

ack, D. (2001). Buckwheat allergy. Allergy, 56, 703–704.

Yasui, Y., Mori, M., Matsumoto, D., Ohnishi, O., Campbell, C. G., & Ota, T. (2008).

Construction of a BAC library for buckwheat genome research - an application to

positional cloning of agriculturally valuable traits. Genes & Genetic Systems, 83,

393–401.

Zhang, Z., Zhou, M., Tang, Y., Li, F., Tang, Y., Shao, J., … Wu, Y. (2012). Bioactive

compounds in functional buckwheat food. Food Research International, 49(1),

389–395.

Monshi, F. I., & Katsube-Tanaka, T. (2022). 2S albumin g13 polypeptide, less related to

Fag e 2, can be eliminated in common buckwheat (Fagopyrum esculentum Moench)

seeds. Food Chemistry: Molecular Sciences, 5, Article 100138. https://doi.org/

10.1016/j.fochms.2022.100138

Monshi, F. I., Khan, N., Kimura, K., Seita, S., Yamamoto, Y., & Katsube-Tanaka, T. (2020).

Structure and diversity of 13S globulin zero-repeat subunit, the trypsin-resistant

storage protein of common buckwheat (Fagopyrum esculentum M.) seeds. Breeding

Science, 70(1), 118–127.

Piersma, S. R., Gaspari, M., Hefle, S. L., & Koppelman, S. J. (2005). Proteolytic processing

of the peanut allergen Ara h 3. Molecular nutrition & food research, 49(8), 744–755.

https://doi.org/10.1002/mnfr.200500020

Radovi´c, S. R., Maksimovi´c, V. R., & Varkonji-Gaˇsi´c, E. I. (1996). Characterization of

buckwheat seed storage proteins. Journal of Agricultural and Food Chemistry, 44,

972–974.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る