リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Potential role of administration of menaquinone-4 and its chemically related compound for neuroinflammatory modulation」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Potential role of administration of menaquinone-4 and its chemically related compound for neuroinflammatory modulation

Wahyu Dwi Saputra 東北大学

2022.03.25

概要

In the aging society, which is not exclusively found in developed countries, neurodegeneration has become a recent health concern (Kalaria et al., 2008). Neurodegeneration is the condition within the central nervous system (CNS) in which the degenerative process contributes to the progressive loss of neuronal cells and subsequently leads to the CNS-associated cognitive or motoric decline. Alzheimer’s and Parkinson’s are the primary diseases strongly associated with the neurodegenerative condition called dementia. According to the current report, the number of dementia patients worldwide will be 65.7 million people by 2030. The increasing dementia prevalence is in line with the spike in dementia cost care (Prince et al., 2013). Thus, dementia has had a substantial global socio- economic impact. With this regard, understanding the dementia onset mechanism and its prevention remains elusive.

Generally, the human brain consists of two types of cells: neuron cells and glial cells. Neuron cells make up around 20% of the total brain cells. On the other hand, glial cells that fill the other 80% consist of four types of cells: oligodendrocytes, ependymal cells, astrocytes, and microglia (von Bartheld et al., 2016). The dysfunction of these cells, such as neuroinflammatory conditions, has been reported to contribute to dementia progression. Neuroinflammation is strongly associated with the over-activation of microglial cells (Streit et al., 2004). Microglia is the brain-resident macrophage-like cells that induce innate immunity over CNS. In the physiological environment, microglia are stated as resting cells. Furthermore, these cells can be transformed into different characteristics by specific stimuli. For example, under negative stimuli such as infection, excess oxidative stress, or injury, microglia are transformed to M1 type microglia, which express pro-inflammatory cytokines including interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and other chemokines. On the contrary, the anti-inflammatory cytokines induce microglial transformation into M2 type microglia, which produce anti-inflammatory cytokines and repairing substances such as interleukin-4 (IL-4), interleukin-10 (IL-10), and transforming growth factor-β (TGF-β) (Cherry et al., 2014).

With regard to neuroinflammation, microglia are activated due to the occurrence of dangerous stimuli and produce pro-inflammatory cytokines to diminish these threats. Under transient stimulation, the production of cytokines is controllable. However, when the negative stimuli exist for an extended period, microglia undergo cycles of cytokines production uncontrollably, which further induces neuroinflammation (Mandrekar and Landreth, 2010). The excess levels of cytokines and chemokines due to the neuroinflammation are harmful and potentially cause neuronal cell defects and death, creating neurodegeneration (McGeer and McGeer, 2004). Lipopolysaccharide (LPS) is an endotoxin from the gram-negative bacteria, extensively studied as the potent microglial activator. The intraperitoneal injection of LPS induced neuroinflammation through microglial inflammation in animal-based experiment (Qin et al., 2007; Zhao et al., 2019). In addition, LPS injection-induced the nuclear factor κB (NF-κB) activation is responsible for transactivating pro-inflammatory cytokines and chemokines (Ifuku et al., 2012; Kang et al., 2019). Therefore, NF-κB is the potential target for inflammatory modulation.

In the viewpoint of prevention, daily food consumption containing bioactive compounds is recommended to maintain a healthy status. One promising bioactive compound is vitamin K. Vitamin K has been known for its roles in blood coagulation and bone metabolism. However, several studies recently reported that vitamin K modulates peripheral inflammation, steroidogenesis, and glucose metabolism (Ho et al., 2020; Ito et al., 2011; Ohsaki et al., 2010). In addition, vitamin K exists naturally in two forms: vitamin K1 (green- leafy vegetables) and vitamin K2 (fermented product). After consumption, same portion of vitamin K analogs are suggested to convert into menaquinone-4 (MK-4), a subtype of vitamin K2, in the organ by the UBIAD1 enzyme (Nakagawa et al., 2010). Recent studies reported that MK-4 is distributed in several animal organs, including the brain. Furthermore, MK-4 administration improved LPS-induced inflammation in microglial cell lines, albeit its molecular mechanism was unclear. Moreover, geranylgeraniol (GGOH) is the natural isoprenoid that shares a similar chemical structure with the side chain of MK-4. It is contained in edible grains, rice bran, and vegetable oils (Muraguchi et al., 2011; Ruiz- Aracama et al., 2017). The administration of GGOH has been evaluated to inhibit peripheral inflammation in cell and animal experiments (Giriwono et al., 2019, 2013).

This study mainly evaluated the molecular mechanisms of anti-inflammatory action by MK-4 and GGOH treatments on the LPS-induced inflammation in MG6 mouse microglial-derived cells. In addition, we sought whether the anti-inflammatory properties of MK-4 and GGOH are found not only in the peripheral inflammatory models but also in the CNS inflammatory scenario. We hope that these findings may place preliminary and basic understanding for future experiments in developing MK-4 and GGOH as nutrients and prodrugs for neuroinflammatory modulation.

この論文で使われている画像

参考文献

Ahmad, R., Raina, D., Meyer, C., Kharbanda, S., Kufe, D., 2006. Triterpenoid CDDO-Me Blocks the NF-κB Pathway by Direct Inhibition of IKKβ on Cys-179*. J. Biol. Chem. 281, 35764–35769. https://doi.org/10.1074/jbc.M607160200

Ahn, K.S., Sethi, G., Krishnan, K., Aggarwal, B.B., 2007. γ-Tocotrienol Inhibits Nuclear Factor-κB Signaling Pathway through Inhibition of Receptor-interacting Protein and TAK1 Leading to Suppression of Antiapoptotic Gene Products and Potentiation of Apoptosis*. J. Biol. Chem. 282, 809–820. https://doi.org/10.1074/jbc.M610028200

Alboni, S., Montanari, C., Benatti, C., Sanchez-Alavez, M., Rigillo, G., Blom, J.M.C., Brunello, N., Conti, B., Pariante, M.C., Tascedda, F., 2014. Interleukin 18 activates MAPKs and STAT3 but not NF-κB in hippocampal HT-22 cells. Brain. Behav. Immun. 40, 85–94. https://doi.org/10.1016/j.bbi.2014.02.015

Aoyama, N., Shirakawa, H., Komai, M., 2017. マウス由来不死化ミクログリア細胞における メナキノン-4 の抗炎症効果(Master Thesis). Tohoku University.

Arai, H., Furuya, T., Yasuda, T., Miura, M., Mizuno, Y., Mochizuki, H., 2004. Neurotoxic Effects of Lipopolysaccharide on Nigral Dopaminergic Neurons Are Mediated by Microglial Activation, Interleukin-1β, and Expression of Caspase-11 in Mice*. J. Biol. Chem. 279, 51647–51653. https://doi.org/10.1074/jbc.M407328200

Bal-Price, A., Brown, G.C., 2001. Inflammatory Neurodegeneration Mediated by Nitric Oxide from Activated Glia-Inhibiting Neuronal Respiration, Causing Glutamate Release and Excitotoxicity. J. Neurosci. 21, 6480–6491. https://doi.org/10.1523/JNEUROSCI.21-17-06480.2001

Bi, X., Baudry, M., Liu, J., Yao, Y., Fu, L., Brucher, F., Lynch, G., 2004. Inhibition of Geranylgeranylation Mediates the Effects of 3-Hydroxy-3-methylglutaryl (HMG)-CoA Reductase Inhibitors on Microglia*. J. Biol. Chem. 279, 48238–48245. https://doi.org/10.1074/jbc.M405442200

Biesmans, S., Meert, T.F., Bouwknecht, J.A., Acton, P.D., Davoodi, N., De Haes, P., Kuijlaars, J., Langlois, X., Matthews, L.J.R., Ver Donck, L., Hellings, N., Nuydens, R., 2013. Systemic Immune Activation Leads to Neuroinflammation and Sickness Behavior in Mice. Mediators Inflamm. 2013, e271359. https://doi.org/10.1155/2013/271359

Block, M.L., Zecca, L., Hong, J.-S., 2007. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat. Rev. Neurosci. 8, 57–69. https://doi.org/10.1038/nrn2038

Borutaite, V., Morkuniene, R., Brown, G.C., 2000. Nitric oxide donors, nitrosothiols and mitochondrial respiration inhibitors induce caspase activation by different mechanisms. FEBS Lett. 467, 155–159. https://doi.org/10.1016/S0014-5793(00)01140-6

Brown, G.C., Vilalta, A., 2015. How microglia kill neurons. Brain Res., Neuroprotection: Basic mechanisms and translational potential 1628, 288–297. https://doi.org/10.1016/j.brainres.2015.08.031

Carrié, I., Portoukalian, J., Vicaretti, R., Rochford, J., Potvin, S., Ferland, G., 2004. Menaquinone-4 Concentration Is Correlated with Sphingolipid Concentrations in Rat Brain. J. Nutr. 134, 167–172. https://doi.org/10.1093/jn/134.1.167

Chen, C.-H., Zhou, W., Liu, S., Deng, Y., Cai, F., Tone, M., Tone, Y., Tong, Y., Song, W., 2012. Increased NF-κB signalling up-regulates BACE1 expression and its therapeutic potential in Alzheimer’s disease. Int. J. Neuropsychopharmacol. 15, 77–90. https://doi.org/10.1017/S1461145711000149

Chen, L.-F., Greene, W.C., 2004. Shaping the nuclear action of NF-κB. Nat. Rev. Mol. Cell Biol. 5, 392–401. https://doi.org/10.1038/nrm1368

Cherry, J.D., Olschowka, J.A., O’Banion, M.K., 2014. Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J. Neuroinflammation 11, 98. https://doi.org/10.1186/1742- 2094-11-98

Chouet, J., Ferland, G., Féart, C., Rolland, Y., Presse, N., Boucher, K., Barberger-Gateau, P., Beauchet, O., Annweiler, C., 2015. Dietary Vitamin K Intake Is Associated with Cognition and Behaviour among Geriatric Patients: The CLIP Study. Nutrients 7, 6739–6750. https://doi.org/10.3390/nu7085306

Cole, S.L., Grudzien, A., Manhart, I.O., Kelly, B.L., Oakley, H., Vassar, R., 2005. Statins Cause Intracellular Accumulation of Amyloid Precursor Protein, β-Secretase-cleaved Fragments, and Amyloid β-Peptide via an Isoprenoid-dependent Mechanism *. J. Biol. Chem. 280, 18755–18770. https://doi.org/10.1074/jbc.M413895200

Conze, D.B., Wu, C.-J., Thomas, J.A., Landstrom, A., Ashwell, J.D., 2008. Lys63-Linked Polyubiquitination of IRAK-1 Is Required for Interleukin-1 Receptor- and Toll-Like Receptor-Mediated NF-κB Activation. Mol. Cell. Biol. 28, 3538–3547. https://doi.org/10.1128/MCB.02098-07

Crick, D.C., Andres, D.A., Waechter, C.J., 1997. Novel Salvage Pathway Utilizing Farnesol and Geranylgeraniol for Protein Isoprenylation. Biochem. Biophys. Res. Commun. 237, 483–487. https://doi.org/10.1006/bbrc.1997.7145

Crowley, L.C., Scott, A.P., Marfell, B.J., Boughaba, J.A., Chojnowski, G., Waterhouse, N.J., 2016. Measuring Cell Death by Propidium Iodide Uptake and Flow Cytometry. Cold Spring Harb. Protoc. 2016, pdb.prot087163. https://doi.org/10.1101/pdb.prot087163

Cunningham, A.J., Murray, C.A., O’Neill, L.A.J., Lynch, M.A., O’Connor, J.J., 1996. Interleukin-1β (IL-1β) and tumour necrosis factor (TNF) inhibit long-term potentiation in the rat dentate gyrus in vitro. Neurosci. Lett. 203, 17–20. https://doi.org/10.1016/0304-3940(95)12252-4

Davidson, R.T., Foley, A.L., Engelke, J.A., Suttie, J.W., 1998. Conversion of Dietary Phylloquinone to Tissue Menaquinone-4 in Rats is Not Dependent on Gut Bacteria. J. Nutr. 128, 220–223. https://doi.org/10.1093/jn/128.2.220

de Moura Espíndola, R., Mazzantini, R.P., Ong, T.P., de Conti, A., Heidor, R., Moreno, F.S., 2005. Geranylgeraniol and β-ionone inhibit hepatic preneoplastic lesions, cell proliferation, total plasma cholesterol and DNA damage during the initial phases of hepatocarcinogenesis, but only the former inhibits NF-κB activation. Carcinogenesis 26, 1091–1099. https://doi.org/10.1093/carcin/bgi047

Dequigiovani, G., Ramos, S.L.F., Alves-Pereira, A., Fabri, E.G., Carvalho, P.R.N., da Silva, M.G., Abdo, M.T.V.N., Martins, A.L.M., Clement, C.R., Veasey, E.A., 2017. Genetic diversity and structure in a major Brazilian annatto (Bixa orellana) germplasm bank revealed by microsatellites and phytochemical compounds. Genet. Resour. Crop Evol. 64, 1775–1788. https://doi.org/10.1007/s10722-017-0535-z

Duan, F., Yu, Y., Guan, R., Xu, Z., Liang, H., Hong, L., 2016. Vitamin K2 Induces Mitochondria- Related Apoptosis in Human Bladder Cancer Cells via ROS and JNK/p38 MAPK Signal Pathways. PLOS ONE 11, e0161886. https://doi.org/10.1371/journal.pone.0161886

Ferland, G., 2012a. The Discovery of Vitamin K and Its Clinical Applications. Ann. Nutr. Metab. 61, 213–218. https://doi.org/10.1159/000343108

Ferland, G., 2012b. Vitamin K, an emerging nutrient in brain function. BioFactors 38, 151–157. https://doi.org/10.1002/biof.1004

Fink, S.L., Cookson, B.T., 2005. Apoptosis, Pyroptosis, and Necrosis: Mechanistic Description of Dead and Dying Eukaryotic Cells. Infect. Immun. https://doi.org/10.1128/IAI.73.4.1907- 1916.2005

Gao, Y., Lecker, S., Post, M.J., Hietaranta, A.J., Li, J., Volk, R., Li, M., Sato, K., Saluja, A.K., Steer, M.L., Goldberg, A.L., Simons, M., 2000. Inhibition of ubiquitin-proteasome pathway– mediated IκBα degradation by a naturally occurring antibacterial peptide. J. Clin. Invest. 106, 439–448. https://doi.org/10.1172/JCI9826

Ghosal, K., Vogt, D.L., Liang, M., Shen, Y., Lamb, B.T., Pimplikar, S.W., 2009. Alzheimer’s disease-like pathological features in transgenic mice expressing the APP intracellular domain. Proc. Natl. Acad. Sci. 106, 18367–18372. https://doi.org/10.1073/pnas.0907652106

Ghosh, M., Xu, Y., Pearse, D.D., 2016. Cyclic AMP is a key regulator of M1 to M2a phenotypic conversion of microglia in the presence of Th2 cytokines. J. Neuroinflammation 13, 9. https://doi.org/10.1186/s12974-015-0463-9

Giridharan, S., Srinivasan, M., 2018. Mechanisms of NF-κB p65 and strategies for therapeutic manipulation. J. Inflamm. Res. 11, 407–419. https://doi.org/10.2147/JIR.S140188

Giriwono, P.E., Shirakawa, H., Ohsaki, Y., Hata, S., Kuriyama, H., Sato, S., Goto, T., Komai, M., 2013. Dietary supplementation with geranylgeraniol suppresses lipopolysaccharide-induced inflammation via inhibition of nuclear factor-κB activation in rats. Eur. J. Nutr. 52, 1191– 1199. https://doi.org/10.1007/s00394-012-0429-y

Giriwono, P.E., Shirakawa, H., Ohsaki, Y., Sato, S., Aoyama, Y., Ho, H.-J., Goto, T., Komai, M., 2019. Geranylgeraniol Suppresses the Expression of IRAK1 and TRAF6 to Inhibit NFκB Activation in Lipopolysaccharide-Induced Inflammatory Responses in Human Macrophage- Like Cells. Int. J. Mol. Sci. 20, 2320. https://doi.org/10.3390/ijms20092320

Gottipati, S., Rao, N.L., Fung-Leung, W.-P., 2008. IRAK1: A critical signaling mediator of innate immunity. Cell. Signal. 20, 269–276. https://doi.org/10.1016/j.cellsig.2007.08.009

Guadagno, J., Swan, P., Shaikh, R., Cregan, S.P., 2015. Microglia-derived IL-1β triggers p53- mediated cell cycle arrest and apoptosis in neural precursor cells. Cell Death Dis. 6, e1779– e1779. https://doi.org/10.1038/cddis.2015.151

Guadagno, J., Xu, X., Karajgikar, M., Brown, A., Cregan, S.P., 2013. Microglia-derived TNFα induces apoptosis in neural precursor cells via transcriptional activation of the Bcl-2 family member Puma. Cell Death Dis. 4, e538–e538. https://doi.org/10.1038/cddis.2013.59

Guan, F., Zhou, X., Li, P., Wang, Y., Liu, M., Li, F., Cui, Y., Huang, T., Yao, M., Zhang, Y., Ma, J., Ma, S., 2019. MG53 attenuates lipopolysaccharide-induced neurotoxicity and neuroinflammation via inhibiting TLR4/NF-κB pathway in vitro and in vivo. Prog. Neuropsychopharmacol. Biol. Psychiatry 95, 109684. https://doi.org/10.1016/j.pnpbp.2019.109684

Gutierrez, E.G., Banks, W.A., Kastin, A.J., 1993. Murine tumor necrosis factor alpha is transported from blood to brain in the mouse. J. Neuroimmunol. 47, 169–176. https://doi.org/10.1016/0165-5728(93)90027-V

Hansen, D.V., Hanson, J.E., Sheng, M., 2017. Microglia in Alzheimer’s disease. J. Cell Biol. 217, 459–472. https://doi.org/10.1083/jcb.201709069

Ho, H.-J., Komai, M., Shirakawa, H., 2020. Beneficial Effects of Vitamin K Status on Glycemic Regulation and Diabetes Mellitus: A Mini-Review. Nutrients 12, 2485. https://doi.org/10.3390/nu12082485

Ho, H.-J., Shirakawa, H., Giriwono, P.E., Ito, A., Komai, M., 2018. A novel function of geranylgeraniol in regulating testosterone production. Biosci. Biotechnol. Biochem. 82, 956– 962. https://doi.org/10.1080/09168451.2017.1415129

Ho, H.-J., Shirakawa, H., Hirahara, K., Sone, H., Kamiyama, S., Komai, M., 2019. Menaquinone-4 Amplified Glucose-Stimulated Insulin Secretion in Isolated Mouse Pancreatic Islets and INS- 1 Rat Insulinoma Cells. Int. J. Mol. Sci. 20, 1995. https://doi.org/10.3390/ijms20081995

Ho, H.-J., Shirakawa, H., Yoshida, R., Ito, A., Maeda, M., Goto, T., Komai, M., 2016. Geranylgeraniol enhances testosterone production via the cAMP/protein kinase A pathway in testis-derived I-10 tumor cells. Biosci. Biotechnol. Biochem. 80, 791–797. https://doi.org/10.1080/09168451.2015.1123612

Ifuku, M., Katafuchi, T., Mawatari, S., Noda, M., Miake, K., Sugiyama, M., Fujino, T., 2012. Anti- inflammatory/anti-amyloidogenic effects of plasmalogens in lipopolysaccharide-induced neuroinflammation in adult mice. J. Neuroinflammation 9, 197. https://doi.org/10.1186/1742- 2094-9-197

Ito, A., Shirakawa, H., Takumi, N., Minegishi, Y., Ohashi, A., Howlader, Z.H., Ohsaki, Y., Sato, T., Goto, T., Komai, M., 2011. Menaquinone-4 enhances testosterone production in rats and testis-derived tumor cells. Lipids Health Dis. 10, 158. https://doi.org/10.1186/1476-511X-10- 158

Kalaria, R.N., Maestre, G.E., Arizaga, R., Friedland, R.P., Galasko, D., Hall, K., Luchsinger, J.A., Ogunniyi, A., Perry, E.K., Potocnik, F., Prince, M., Stewart, R., Wimo, A., Zhang, Z.-X., Antuono, P., 2008. Alzheimer’s disease and vascular dementia in developing countries: prevalence, management, and risk factors. Lancet Neurol. 7, 812–826. https://doi.org/10.1016/S1474-4422(08)70169-8

Kang, J.-B., Park, D.-J., Shah, M.-A., Kim, M.-O., Koh, P.-O., 2019. Lipopolysaccharide induces neuroglia activation and NF-κB activation in cerebral cortex of adult mice. Lab. Anim. Res. 35, 19. https://doi.org/10.1186/s42826-019-0018-9

Kettenmann, H., Hanisch, U.-K., Noda, M., Verkhratsky, A., 2011. Physiology of Microglia. Physiol. Rev. 91, 461–553. https://doi.org/10.1152/physrev.00011.2010

Khaibullin, T., Ivanova, V., Martynova, E., Cherepnev, G., Khabirov, F., Granatov, E., Rizvanov, A., Khaiboullina, S., 2017. Elevated Levels of Proinflammatory Cytokines in Cerebrospinal Fluid of Multiple Sclerosis Patients. Front. Immunol. 8. https://doi.org/10.3389/fimmu.2017.00531

Kim, B.H., Lee, J.-Y., Seo, J.H., Lee, H.Y., Ryu, S.Y., Ahn, B.W., Lee, C.-K., Hwang, B.Y., Han, S.-B., Kim, Y., 2007. Artemisolide is a typical inhibitor of IκB kinase β targeting cysteine-179 residue and down-regulates NF-κB-dependent TNF-α expression in LPS-activated macrophages. Biochem. Biophys. Res. Commun. 361, 593–598. https://doi.org/10.1016/j.bbrc.2007.07.069

Kim, J., Lee, J.N., Ye, James, Hao, R., DeBose-Boyd, R., Ye, Jin, 2013. Sufficient production of geranylgeraniol is required to maintain endotoxin tolerance in macrophages. J. Lipid Res. 54, 3430–3437. https://doi.org/10.1194/jlr.M042549

Kotti, T.J., Ramirez, D.M.O., Pfeiffer, B.E., Huber, K.M., Russell, D.W., 2006. Brain cholesterol turnover required for geranylgeraniol production and learning in mice. Proc. Natl. Acad. Sci. 103, 3869–3874. https://doi.org/10.1073/pnas.0600316103

Kurtys, E., Eisel, U.L.M., Hageman, R.J.J., Verkuyl, J.M., Broersen, L.M., Dierckx, R.A.J.O., de Vries, E.F.J., 2018. Anti-inflammatory effects of rice bran components. Nutr. Rev. 76, 372–379. https://doi.org/10.1093/nutrit/nuy011

Kuwata, H., Matsumoto, M., Atarashi, K., Morishita, H., Hirotani, T., Koga, R., Takeda, K., 2006. IκBNS Inhibits Induction of a Subset of Toll-like Receptor-Dependent Genes and Limits Inflammation. Immunity 24, 41–51. https://doi.org/10.1016/j.immuni.2005.11.004

Li, Q., Verma, I.M., 2002. NF-κB regulation in the immune system. Nat. Rev. Immunol. 2, 725–734. https://doi.org/10.1038/nri910

Liu, T., Zhang, L., Joo, D., Sun, S.-C., 2017. NF-κB signaling in inflammation. Signal Transduct. Target. Ther. 2, 17023. https://doi.org/10.1038/sigtrans.2017.23

Liu, Y.-P., Lin, H.-I., Tzeng, S.-F., 2005. Tumor necrosis factor-α and interleukin-18 modulate neuronal cell fate in embryonic neural progenitor culture. Brain Res. 1054, 152–158. https://doi.org/10.1016/j.brainres.2005.06.085

Lyman, M., Lloyd, D.G., Ji, X., Vizcaychipi, M.P., Ma, D., 2014. Neuroinflammation: The role and consequences. Neurosci. Res. 79, 1–12. https://doi.org/10.1016/j.neures.2013.10.004

Mandrekar, S., Landreth, G.E., 2010. Microglia and Inflammation in Alzheimer’s Disease. CNS Neurol. Disord. Drug Targets 9, 156–167. https://doi.org/10.2174/187152710791012071

Marcuzzi, A., Piscianz, E., Zweyer, M., Bortul, R., Loganes, C., Girardelli, M., Baj, G., Monasta, L., Celeghini, C., 2016. Geranylgeraniol and Neurological Impairment: Involvement of Apoptosis and Mitochondrial Morphology. Int. J. Mol. Sci. 17, 365. https://doi.org/10.3390/ijms17030365

Marcuzzi, A., Tommasini, A., Crovella, S., Pontillo, A., 2010. Natural isoprenoids inhibit LPS- induced-production of cytokines and nitric oxide in aminobisphosphonate-treated monocytes. Int. Immunopharmacol. 10, 639–642. https://doi.org/10.1016/j.intimp.2010.03.008

McGeer, P.L., McGeer, E.G., 2004. Inflammation and neurodegeneration in Parkinson’s disease. Parkinsonism Relat. Disord., Proceeding of the 8th International Symposium on the Treatment of Parkinson’s Disease 10, S3–S7. https://doi.org/10.1016/j.parkreldis.2004.01.005

Medzhitov, R., Horng, T., 2009. Transcriptional control of the inflammatory response. Nat. Rev. Immunol. 9, 692–703. https://doi.org/10.1038/nri2634

Micheau, O., Tschopp, J., 2003. Induction of TNF Receptor I-Mediated Apoptosis via Two Sequential Signaling Complexes. Cell 114, 181–190. https://doi.org/10.1016/S0092-8674(03)00521-X

Miquel, K., Pradines, A., Tercé, F., Selmi, S., Favre, G., 1998. Competitive Inhibition of Choline Phosphotransferase by Geranylgeraniol and Farnesol Inhibits Phosphatidylcholine Synthesis and Induces Apoptosis in Human Lung Adenocarcinoma A549 Cells*. J. Biol. Chem. 273, 26179–26186. https://doi.org/10.1074/jbc.273.40.26179

Moghadam, B.F., Fereidoni, M., 2020. Neuroprotective effect of menaquinone-4 (MK-4) on transient global cerebral ischemia/reperfusion injury in rat. PLOS ONE 15, e0229769. https://doi.org/10.1371/journal.pone.0229769

Muraguchi, T., Okamoto, K., Mitake, M., Ogawa, H., Shidoji, Y., 2011. Polished rice as natural sources of cancer-preventing geranylgeranoic acid. J. Clin. Biochem. Nutr. 49, 8–15. https://doi.org/10.3164/jcbn.10-110

Nakagawa, K., Hirota, Y., Sawada, N., Yuge, N., Watanabe, M., Uchino, Y., Okuda, N., Shimomura, Y., Suhara, Y., Okano, T., 2010. Identification of UBIAD1 as a novel human menaquinone-4 biosynthetic enzyme. Nature 468, 117–121. https://doi.org/10.1038/nature09464

Oeckinghaus, A., Ghosh, S., 2009. The NF-κB Family of Transcription Factors and Its Regulation. Cold Spring Harb. Perspect. Biol. 1, a000034. https://doi.org/10.1101/cshperspect.a000034

Ohsaki, Y., Shirakawa, H., Hiwatashi, K., Furukawa, Y., Mizutani, T., Komai, M., 2006. Vitamin K Suppresses Lipopolysaccharide-Induced Inflammation in the Rat. Biosci. Biotechnol. Biochem. 70, 926–932. https://doi.org/10.1271/bbb.70.926

Ohsaki, Y., Shirakawa, H., Miura, A., Giriwono, P.E., Sato, S., Ohashi, A., Iribe, M., Goto, T., Komai, M., 2010. Vitamin K suppresses the lipopolysaccharide-induced expression of inflammatory cytokines in cultured macrophage-like cells via the inhibition of the activation of nuclear factor κB through the repression of IKKα/β phosphorylation. J. Nutr. Biochem. 21, 1120– 1126. https://doi.org/10.1016/j.jnutbio.2009.09.011

Okano, T., Shimomura, Y., Yamane, M., Suhara, Y., Kamao, M., Sugiura, M., Nakagawa, K., 2008. Conversion of Phylloquinone (Vitamin K1) into Menaquinone-4 (Vitamin K2) in Mice Two Possible Routes for Menaquinone-4 Accumulation In Cerebra Of Mice. J. Biol. Chem. 283, 11270–11279. https://doi.org/10.1074/jbc.M702971200

Olianas, M.C., Dedoni, S., Onali, P., 2019. Inhibition of TNF-α-induced neuronal apoptosis by antidepressants acting through the lysophosphatidic acid receptor LPA1. Apoptosis 24, 478–498. https://doi.org/10.1007/s10495-019-01530-2

Prince, M., Bryce, R., Albanese, E., Wimo, A., Ribeiro, W., Ferri, C.P., 2013. The global prevalence of dementia: A systematic review and metaanalysis. Alzheimers Dement. 9, 63-75.e2. https://doi.org/10.1016/j.jalz.2012.11.007

Prinz, M., Jung, S., Priller, J., 2019. Microglia Biology: One Century of Evolving Concepts. Cell 179, 292–311. https://doi.org/10.1016/j.cell.2019.08.053

Purcaro, G., Barp, L., Beccaria, M., Conte, L.S., 2016. Characterisation of minor components in vegetable oil by comprehensive gas chromatography with dual detection. Food Chem. 212, 730–738. https://doi.org/10.1016/j.foodchem.2016.06.048

Qin, L., Wu, X., Block, M.L., Liu, Y., Breese, G.R., Hong, J.-S., Knapp, D.J., Crews, F.T., 2007. Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 55, 453–462. https://doi.org/10.1002/glia.20467

Raes, G., Noël, W., Beschin, A., Brys, L., de Baetselier, P., Hassanzadeh, G.G., 2002. FIZZ1 and Ym as Tools to Discriminate between Differentially Activated Macrophages. Dev. Immunol. 9, 151–159. https://doi.org/10.1080/1044667031000137629

Riazi, K., Galic, M.A., Kuzmiski, J.B., Ho, W., Sharkey, K.A., Pittman, Q.J., 2008. Microglial activation and TNFα production mediate altered CNS excitability following peripheral inflammation. Proc. Natl. Acad. Sci. 105, 17151–17156. https://doi.org/10.1073/pnas.0806682105

Ringheim, G.E., Szczepanik, A.M., Petko, W., Burgher, K.L., Zhu, S.Z., Chao, C.C., 1998. Enhancement of beta-amyloid precursor protein transcription and expression by the soluble interleukin-6 receptor/interleukin-6 complex. Mol. Brain Res. 55, 35–44. https://doi.org/10.1016/S0169-328X(97)00356-2

Ronden, J.E., Drittij-Reijnders, M.-J., Vermeer, C., Thijssen, H.H.W., 1998. Intestinal flora is not an intermediate in the phylloquinone-menaquinone-4 conversion in the rat. Biochim. Biophys. Acta BBA - Gen. Subj. 1379, 69–75. https://doi.org/10.1016/S0304-4165(97)00089-5

Ruiz-Aracama, A., Goicoechea, E., Guillén, M.D., 2017. Direct study of minor extra-virgin olive oil components without any sample modification. 1H NMR multisupression experiment: A powerful tool. Food Chem. 228, 301–314. https://doi.org/10.1016/j.foodchem.2017.02.009

Salminen, A., Lehtonen, M., Suuronen, T., Kaarniranta, K., Huuskonen, J., 2008. Terpenoids: natural inhibitors of NF-κB signaling with anti-inflammatory and anticancer potential. Cell. Mol. Life Sci. 65, 2979–2999. https://doi.org/10.1007/s00018-008-8103-5

Saputra, W.D., Aoyama, N., Komai, M., Shirakawa, H., 2019. Menaquinone-4 Suppresses Lipopolysaccharide-Induced Inflammation in MG6 Mouse Microglia-Derived Cells by Inhibiting the NF-κB Signaling Pathway. Int. J. Mol. Sci. 20, 2317. https://doi.org/10.3390/ijms20092317

Saputra, W.D., Shono, H., Ohsaki, Y., Sultana, H., Komai, M., Shirakawa, H., 2021. Geranylgeraniol Inhibits Lipopolysaccharide-Induced Inflammation in Mouse-Derived MG6 Microglial Cells via NF-κB Signaling Modulation. Int. J. Mol. Sci. 22, 10543. https://doi.org/10.3390/ijms221910543

Schwalfenberg, G.K., 2017. Vitamins K1 and K2: The Emerging Group of Vitamins Required for Human Health. J. Nutr. Metab. 2017, e6254836. https://doi.org/10.1155/2017/6254836

Shea, M.K., Booth, S.L., Massaro, J.M., Jacques, P.F., D’Agostino, R.B., Sr, Dawson-Hughes, B., Ordovas, J.M., O’Donnell, C.J., Kathiresan, S., Keaney, J.F., Jr, Vasan, R.S., Benjamin, E.J., 2008. Vitamin K and Vitamin D Status: Associations with Inflammatory Markers in the Framingham Offspring Study. Am. J. Epidemiol. 167, 313–320. https://doi.org/10.1093/aje/kwm306

Shearer, M.J., Newman, P., 2008. Metabolism and cell biology of vitamin K. Thromb. Haemost. 100, 530–547. https://doi.org/10.1160/TH08-03-0147

Shipman, C.M., Croucher, P.I., Graham, R., Russell, G., Helfrich, M.H., Rogers, M.J., 1998. The Bisphosphonate Incadronate (YM175) Causes Apoptosis of Human Myeloma Cells in Vitro by Inhibiting the Mevalonate Pathway. Cancer Res. 58, 5294–5297.

Shirakawa H., Tomoko K., Komai M., 2014. Conversion of Menaquinone-4 in Animal Organs and its Functions. J. Jpn. Oil Chem. Soc. 14, 547–553. https://doi.org/10.5650/oleoscience.14.547

Silva, R.O., Sousa, F.B.M., Damasceno, S.R.B., Carvalho, N.S., Silva, V.G., Oliveira, F.R.M.A., Sousa, D.P., Aragão, K.S., Barbosa, A.L.R., Freitas, R.M., Medeiros, J.V.R., 2014. Phytol, a diterpene alcohol, inhibits the inflammatory response by reducing cytokine production and oxidative stress. Fundam. Clin. Pharmacol. 28, 455–464. https://doi.org/10.1111/fcp.12049

Stark, D.T., Bazan, N.G., 2011. Synaptic and Extrasynaptic NMDA Receptors Differentially Modulate Neuronal Cyclooxygenase-2 Function, Lipid Peroxidation, and Neuroprotection. J. Neurosci. 31, 13710–13721. https://doi.org/10.1523/JNEUROSCI.3544-11.2011

Streit, W.J., Mrak, R.E., Griffin, W.S.T., 2004. Microglia and neuroinflammation: a pathological perspective. J. Neuroinflammation 1, 14. https://doi.org/10.1186/1742-2094-1-14

Subhramanyam, C.S., Wang, C., Hu, Q., Dheen, S.T., 2019. Microglia-mediated neuroinflammation in neurodegenerative diseases. Semin. Cell Dev. Biol., SI: Calcium signalling 94, 112–120. https://doi.org/10.1016/j.semcdb.2019.05.004

Sultana, H., Watanabe, K., Rana, M.M., Takashima, R., Ohashi, A., Komai, M., Shirakawa, H., 2018. Effects of Vitamin K2 on the Expression of Genes Involved in Bile Acid Synthesis and Glucose Homeostasis in Mice with Humanized PXR. Nutrients 10, 982. https://doi.org/10.3390/nu10080982

Sundaram, K.S., Fan, J.-H., Engelke, J.A., Foley, A.L., Suttie, J.W., Lev, M., 1996. Vitamin K Status Influences Brain Sulfatide Metabolism in Young Mice and Rats. J. Nutr. 126, 2746–2751. https://doi.org/10.1093/jn/126.11.2746

Takeda, Y., Nakao, K., Nakata, K., Kawakami, A., Ida, H., Ichikawa, T., Shigeno, M., Kajiya, Y., Hamasaki, K., Kato, Y., Eguchi, K., 2001. Geranylgeraniol, an Intermediate Product in Mevalonate Pathway, Induces Apoptotic Cell Death in Human Hepatoma Cells: Death Receptor-independent Activation of Caspase-8 with Down-regulation of Bcl-xL Expression. Jpn. J. Cancer Res. 92, 918–925. https://doi.org/10.1111/j.1349-7006.2001.tb01181.x

Takenouchi, T., Iwamaru, Y., Sugama, S., Tsukimoto, M., Fujita, M., Sekigawa, A., Sekiyama, K., Sato, M., Kojima, S., Conti, B., Hashimoto, M., Kitani, H., 2011. The activation of P2X7 receptor induces cathepsin D-dependent production of a 20-kDa form of IL-1β under acidic extracellular pH in LPS-primed microglial cells. J. Neurochem. 117, 712–723. https://doi.org/10.1111/j.1471-4159.2011.07240.x

Takenouchi, T., Ogihara, K., Sato, M., Kitani, H., 2005. Inhibitory effects of U73122 and U73343 on Ca2+ influx and pore formation induced by the activation of P2X7 nucleotide receptors in mouse microglial cell line. Biochim. Biophys. Acta BBA - Gen. Subj. 1726, 177–186. https://doi.org/10.1016/j.bbagen.2005.08.001

Tanaka, S., Nishiumi, S., Nishida, M., Mizushina, Y., Kobayashi, K., Masuda, A., Fujita, T., Morita, Y., Mizuno, S., Kutsumi, H., Azuma, T., Yoshida, M., 2010. Vitamin K3 attenuates lipopolysaccharide-induced acute lung injury through inhibition of nuclear factor-κB activation. Clin. Exp. Immunol. 160, 283–292. https://doi.org/10.1111/j.1365- 2249.2009.04083.x

Tanaka, T., Tatsuno, I., Uchida, D., Moroo, I., Morio, H., Nakamura, S., Noguchi, Y., Yasuda, T., Kitagawa, M., Saito, Y., Hirai, A., 2000. Geranylgeranyl-Pyrophosphate, an Isoprenoid of Mevalonate Cascade, Is a Critical Compound for Rat Primary Cultured Cortical Neurons to Protect the Cell Death Induced by 3-Hydroxy-3-Methylglutaryl-CoA Reductase Inhibition. J. Neurosci. 20, 2852–2859. https://doi.org/10.1523/JNEUROSCI.20-08-02852.2000

Tang, Y., Le, W., 2016. Differential Roles of M1 and M2 Microglia in Neurodegenerative Diseases. Mol. Neurobiol. 53, 1181–1194. https://doi.org/10.1007/s12035-014-9070-5

Terrando, N., Eriksson, L.I., Kyu Ryu, J., Yang, T., Monaco, C., Feldmann, M., Jonsson Fagerlund, M., Charo, I.F., Akassoglou, K., Maze, M., 2011. Resolving postoperative neuroinflammation and cognitive decline. Ann. Neurol. 70, 986–995. https://doi.org/10.1002/ana.22664

Unal Cevik, I., Dalkara, T., 2003. Intravenously administered propidium iodide labels necrotic cells in the intact mouse brain after injury. Cell Death Differ. 10, 928–929. https://doi.org/10.1038/sj.cdd.4401250

Viatour, P., Merville, M.-P., Bours, V., Chariot, A., 2005. Phosphorylation of NF-κB and IκB proteins: implications in cancer and inflammation. Trends Biochem. Sci. 30, 43–52. https://doi.org/10.1016/j.tibs.2004.11.009

von Bartheld, C.S., Bahney, J., Herculano-Houzel, S., 2016. The search for true numbers of neurons and glial cells in the human brain: A review of 150 years of cell counting. J. Comp. Neurol. 524, 3865–3895. https://doi.org/10.1002/cne.24040

Wall, E.A., Zavzavadjian, J.R., Chang, M.S., Randhawa, B., Zhu, X., Hsueh, R.C., Liu, J., Driver, A., Bao, X.R., Sternweis, P.C., Simon, M.I., Fraser, I.D.C., 2009. Suppression of LPS-Induced TNF-α Production in Macrophages by cAMP Is Mediated by PKA-AKAP95-p105. Sci. Signal. https://doi.org/10.1126/scisignal.2000202

Wessells, J., Baer, M., Young, H.A., Claudio, E., Brown, K., Siebenlist, U., Johnson, P.F., 2004. BCL-3 and NF-κB p50 Attenuate Lipopolysaccharide-induced Inflammatory Responses in Macrophages*. J. Biol. Chem. 279, 49995–50003. https://doi.org/10.1074/jbc.M404246200

Windheim, M., Stafford, M., Peggie, M., Cohen, P., 2008. Interleukin-1 (IL-1) Induces the Lys63- Linked Polyubiquitination of IL-1 Receptor-Associated Kinase 1 To Facilitate NEMO Binding and the Activation of IκBα Kinase. Mol. Cell. Biol. 28, 1783–1791. https://doi.org/10.1128/MCB.02380-06

Wolf, S.A., Boddeke, H.W.G.M., Kettenmann, H., 2017. Microglia in Physiology and Disease. Annu. Rev. Physiol. 79, 619–643. https://doi.org/10.1146/annurev-physiol-022516-034406

Yamin, T.-T., Miller, D.K., 1997. The Interleukin-1 Receptor-associated Kinase Is Degraded by Proteasomes following Its Phosphorylation. J. Biol. Chem. 272, 21540–21547. https://doi.org/10.1074/jbc.272.34.21540

Yang, J., Fan, G.-H., Wadzinski, B.E., Sakurai, H., Richmond, A., 2001. Protein Phosphatase 2A Interacts with and Directly Dephosphorylates RelA *. J. Biol. Chem. 276, 47828–47833. https://doi.org/10.1074/jbc.M106103200

Yu, Y., Li, Y., Gao, F., Hu, Q., Zhang, Y., Chen, D., Wang, G., 2016. Vitamin K2 suppresses rotenone-induced microglial activation in vitro. Acta Pharmacol. Sin. 37, 1178–1189. https://doi.org/10.1038/aps.2016.68

Zhao, J., Bi, W., Xiao, S., Lan, X., Cheng, X., Zhang, J., Lu, D., Wei, W., Wang, Y., Li, H., Fu, Y., Zhu, L., 2019. Neuroinflammation induced by lipopolysaccharide causes cognitive impairment in mice. Sci. Rep. 9, 5790. https://doi.org/10.1038/s41598-019-42286-8

参考文献をもっと見る