リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Gaseous detonation with dilute water spray in a two-dimensional straight channel: analysis based on numerical simulation (本文)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Gaseous detonation with dilute water spray in a two-dimensional straight channel: analysis based on numerical simulation (本文)

渡部, 広吾輝 慶應義塾大学

2020.03.23

概要

In this thesis, the gaseous detonation with dilute water spray in a two-dimensional (2D) straight channel is investigated by 2D numerical simulation. The numerical simulation is based on Eulerian-Lagrangian method and 2D compressible reactive Navier-Stokes equations, with the source term accounting for the detailed chemistry and the interaction with liquid phase. The main focus of the present study is to reveal the mean structure of gaseous detonation with dilute water spray, and the droplet behavior during the propagation of gaseous detonation with dilute water spray. The Chapter 1 introduces the background and the motivation of the present study. The mathematical model proposed in this study is explained in the Chapter 2. Then, the Chapter 3 presents the numerical methodology to couple and solve the mathematical model numerically. In the Chapter 4, the simulations referring to the experiment by Jarsalé, Virot & Chinnayya (2016) are conducted to validate the present numerical model through the comparison with the experimental data qualitatively. The velocity decreases and the change in the cellular structure by the addition of water droplets (WDs) show the similar tendency with the experiment and the simulation could reproduce the phenomena of gaseous detonation with WDs. The Chapter 5 quantitatively discusses and analyzes the mean structure of gaseous detonation with dilute WDs by the statistical Favre averaged one-dimensional profiles for both gas and dispersed phase. The mean structure of gaseous detonation with dilute WDs shares similar structure with that without WDs although the characteristic lengths for detonation are more or less increased due to the lower propagation velocity by the interaction with WDs. The interaction with WDs suppressed the fluctuation behind the front by the smaller length scale ratio of the droplet diameter to the turbulent length scale. The comparison of the characteristic lengths for gas phase and WDs reveals that the gas phase and WDs are intimately intertwined. In the present simulation conditions, the breakup occurs downstream of the induction zone and the water vapor from the evaporation does not affect the reactivity of the gaseous mixture. Furthermore, the laminar Master Equation for gaseous detonation laden with inert WDs is derived in this study and shows that the hydrodynamic thickness should rely on the gaseous sound speed. In the Chapter 6, the droplet behavior during the propagation of gaseous detonation with dilute WDs is qualitatively analyzed through the instantaneous flow fields and the Favre averaged one-dimensional profiles for WDs by categorizing WDs based on the initial shock strength and breakup intensity. The droplet breakup occurs inhomogeneously behind the front primarily by the jet, the transverse wave, the collision of the transverse waves, and the interaction between the receding jet and the transverse wave from the instantaneous flow field analysis. The WDs experiencing these factors continuously breakup further than the other WDs behind the front and the polydispersity in the droplet diameter from the monodisperse WDs originates. The initial shock strength which WDs experience does not affect the droplet diameter after the breakup nor play a role in generating the polydisperse spray. Finally, the main conclusions are drawn in the Chapter 7.

この論文で使われている画像

参考文献

ABRAMAZON B. & SIRIGNANO W. A. 1989 Droplet vaporization model for spray combustion calculations, International Journal of Heat and Mass Transfer 32 (9) 1605-1618

ADIGA K. C., WILLAUER H. D., ANANTH R. & WILLIAMS F. W. 2009 Implications of droplet breakup and formation of ultra fine mist in blast mitigation, Fire Safety Journal 44 (3) 363-369

AUSTIN J. M. 2003 The Role of Instability in Gaseous Detonation, PhD thesis, California Institute of Technology

AUSTIN J. M. & SHEPHERD J. E. 2003 Detonations in hydrocarbon fuel blends, Combustion and Flame 132 73-90

BAR-OR R., SICHEL M. & NICHOLLS J. A. 1981 The propagation of cylindrical detonations in monodisperse sprays, Proceedings of the Combustion Institute 18 (1) 1599-1606

BAR-OR R., SICHEL M. & NICHOLLS J. A. 1982 The reaction zone structure of cylindrical detonations in monodisperse sprays, Proceedings of the Combustion Institute 19 (1) 665-673

BENMAHAMMED M. A., VEYSSIERE B. KHASAINOV B. A. & MAR M. 2016 Effect of gaseous oxidizer composition on the detonability of isooctane-air spray, Combustion and Flame 155 198-207

BOECK L. R., KINK A. OEZDIN D., HASSLBERGER J. & SATTELMAYER T. 2015 Influence of water mist on flame acceleration, DDT and detonation in H2-air mixture, International Journal of Hydrogen Energy 40 (21) 6995-7004

BOIKO V. M., LOTOV V. V. & PAPYRIN A. N. 1991 Ignition of Liquid Fuel Drops in Shock Waves, Dynamics of Deflagrations and Reactive Systems: Heterogeneous Combustion, 205-219

BORGES R., CARMONA M., COSTA B. & DON W. S. 2008 An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws, Journal of Computational Physics 227 3191-3211

BRENNEN C. E. 2005 Fundamentals of Multiphase Flows, Cambridge University Press

BRODKEY R. S. 1967 The Phenomena of Fluid Motions, Addison-Wesley, Reading Mass

BURR J. R. & YU K. H. 2019 Experimental characterization of RDE combustor flowfield using linear channel, Proceedings of the Combustion Institute 37 (3) 3471-3478

CHANG C. H. & LIOU M. S. 2007 A robust and accurate approach to computing compressible multiphase flow: stratified flow model and AUSM+-up scheme, Journal of Computational Physics 225 840-873

CHAPMAN S. & COWLING T. G. 1991 The Mathematical Theory of Non-uniform Gases third edition, Cambridge University Press

CHAUVIN A., JOURDAN G., DANIEL E., HOUAS L. & TOSELLO R. 2011 Experimental investigation of the propagation of a planar shock wave through a two-phase gas-liquid medium, Physics of Fluids 23 113301

CHAUVIN A., DANIEL E., CHINNAYYA A., MASSONI J. & JOURDAN G. 2016 Shock waves in sprays: numerical study of secondary atomization and experimental comparison, Shock Waves 26 (4) 403-413

CHEIKHRAVAT H., GOULIER J., BENTAIB A., MEYNET N., CHAUMEIX. N. & PAILLARD C. E. 2015 Effect of water sprays on flame propagation in hydrogen/air/steam mixtures, Proceedings of the Combustion Institute 35 (3) 2715-2722

CHINNAYYA A., HADJADJ A. & NGOMO D. 2013 Computational study of detonation wave propagation in narrow channels, Physics of Fluids 25 036101

CLIFT R. & GAUVIN W. H. 1970 The motion of particles in turbulent gas streams, Proceedings of Chemeca 70 (1) 14-28

CLIFT R., GRACE J. R. & WEBER M. E. 1978 Bubble, Drops and Particles, Academic Press

CRAMER F. B. 1963 The onset of detonation in a droplet combustion field, Proceedings of the Combustion Institutes 9 (1) 482-487

CROMER A. 1980 Stable solutions using the Euler approximation, American Journal of Physics 49 (9) 455-459

DABORA E. K., RAGLAND K. W. & NICHOLLS J. A. 1969 Drop-size effect in spray detonations, Proceedings of the Combustion Institute 12 (1) 19-26

DABORA E. K. & WEINBERGER L. P. 1974 Present status of detonation in two-phase systems, Acta Astronautica 1 361-372

ENDO T., KASAHARA J., MATSUO A., INABA K., SATO S. & FUJIWARA T. 2004 Pressure History at the Thrust Wall of a Simplified Pulse Detonation Engine, AIAA Journal 42 (9) 1921-1930

ERGUN S. 1952 Fluid flow through packed columns, Chemical Engineering Progress 48 89-94

FAETH G. M., HSIANG L. P. & WU P. K. 1995 Structure and Breakup Properties of Sprays, International Journal of Multiphase Flow 21 99-127

FAVRE A. 1965 Equations des gas turbulents compressibles, Journal de Mecanique 4 361-421

FEDOROV A. V. & KRATOVA Y. V. 2015a Analysis of the influence of inert particles on the propagation of a cellular heterogeneous detonation, Shock Waves 25 (3) 255-265

FEDOROV A. V. & KRATOVA Y. V. 2015b Influence of non-reactive particle cloud on heterogeneous detonation propagation, Journal of Loss and Prevention in the Process Industries 36 404-415

FROLOV S. M., AKSENOV V. S., IVANOV V. S. & SHAMSHIN I. O. 2017 Continuous detonation combustion of ternary “hydrogen-liquid propane-air” mixture in annular combustor, International Journal of Hydrogen Energy 42 (26) 16808-16820

GAMEZO V. N., DESBORDES D. & ORAN E. S. 1999 Formation and Evolution of Two-dimensional Cellular Detonation, Combustion and Flame 116 154-165

GELFAND B. E. 1996 Droplet breakup phenomena in flow with velocity lag, Progress in Energy and Combustion Science 22 (3) 201-265

GELFAND B. E., FROLOV S. M. & NETTLETON M. A. 1991 Gaseous detonation – A selective review, Progress in Energy and Combustion Science 17 (4) 327-371

GERSTEIN M., CARLSON E. R. & HILL F. U. 1954 Natural Gas-Air Explosions at Reduced Pressure Detonation Velocities and Pressures, Industrial and Engineering Chemistry 46 (12) 2558-2562

GIDASPOW D. 1994 Multiphase flow and fluidization: continuum and kinetic theory descriptions, Academic Press

GILBERT R. G., LUTHER K. & TROE J. 1983 Theory of Thermal Unimolecular Reactions in the Fall-off Range. II. Weak Collision Rate Constants, Chemical Physics 87 (2) 169-177

GORDON S. & MCBRIDE B. J. 1994 Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications, I. Analysis, NASA Reference Publication 1311, https://www.grc.nasa.gov/WWW/CEAWeb/

GORDON S., MCBRIDE B. J. & ZELEZNIK F. J. 1984 Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications Supplement I – Transport Properties, NASA Technical Memorandum, 86885

GORE R. A. & CROWE C. T. 1989 Effect of particle size on modulating turbulent intensity, International Journal of Multiphase Flow 15 (2) 279-285

GOTO K., NISHIMURA J., KAWASAKI A., MATSUOKA K., KASAHARA J., MATSUO A., FUNAKI I., NAKATA D., UCHIUMI M. & HIGASHINO K. 2019 Propulsive Performance and Heating Environment of Rotating Detonation Engine with Various Nozzles, Journal of Propulsion and Power 35 (7) 213-223

GOTTLIEB S. & SHU C. W. 1998 Total Variation Diminishing Runge-Kutta Scheme, Mathematics of Computation 67 73-85

GOTTLIEB S., SHU C. & TADMOR E. 2001 Strong Stability-Preserving High-Order Time Discretization Methods, SIAM Review 43 (1) 89-112

GOU X., SUN W., CHEN Z. & Ju Y. 2011 A dynamic multi-timescale method for combustion modeling with detailed and reduced chemical kinetic mechanisms, Combustion and Flame 157 1111-1121

GUHA A. 1992a Jump conditions across normal shock waves in pure vapour-droplets flows, Journal of Fluid Mechanics 241 349-369

GUHA A. 1992b Structure of partly dispersed normal shock waves in vapor-droplet flows, Physics of Fluids 4 1556-1578

GUILDENBECHER D. R., LOPEZ-RIVERA C. & SOJKA P. E 2009 Secondary atomization, Experiments in Fluids 46 371-402

HAN W., KONG W., GAO Y. & LAW C. K. 2017 The role of global curvature on the structure and propagation of weakly unstable cylindrical detonations, Journal of Fluid Mechanics 813 458-481

HAN W., WANG C. & LAW C. K. 2019 Role of transversal concentration gradient in detonation propagation, Journal of Fluid Mechanics 865 602-649

HENRICK A. K., ASLAM T. D. & POWERS J. M. 2005 Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points, Journal of Computational Physics 207 542-567

HIGGINS A. 2012 Steady One-Dimensional Detonations, Shock Wave Science and Technology Reference Library, Detonation Dynamics, Springer-Verlag Berlin Heidelberg

HOEF M. A. van der, ANNALAND M. Van Sint, DEEN N. G. & KUIPERS J. A. M. 2008, Numerical Simulation of Dense Gas-Solid Fluidized Beds: A Multiscale Modeling Strategy, The Annual Review of Fluid Mechanism 40 47-70

HONG Z., DAVIDSON D. F. & HANSON R. K. 2011 An improved H2/O2 mechanism based on recent shock tube/laser absorption measurements, Combustion and Flame 158 633-644

HU F., Wang R. & CHEN X. 2016 A modified fifth-order WENOZ method for hyperbolic conservation laws, Journal of Computational and Applied Mathematics 303 56-68

INABA K. 2004 Numerical Study on the Dynamics of Cellular Structure in Gaseous Detonations, PhD thesis, Keio University

INABA K., MATSUO A. & SHEPHERD J. E. 2006 Soot Track Generation in Mach Reflection, Journal of the Combustion Society of Japan 48 (146) 372-378

ISHII K., MORITA K., OKITSU Y., SAYAMA S. & KATAOKA H. 2013 Cellular pattern formation in detonation propagation, Proceedings of the Combustion Institute 34 (2) 1903-1911

JARSALÉ G., VIROT F. & CHINNAYYA A. 2016 Ethylene-air detonation in water spray, Shock Waves 26 561-572

JARSALÉ G. 2017 Étude expérimentale de l’interaction d’une détonation gazeuse avec un spray d’eau, PhD thesis, ENSMA

JIANG G. S. & SHU C. W. 1996 Efficient Implementation of Weighted ENO Schemes, Journal of Computational Physics 126 202-228

JU Y. & LAW C. K. 2002 Propagation and Quenching of Detonation Waves in Particle Laden Mixtures, Combustion and Flame 129 (4) 356-364

KAILASANATH K. 2000 Review on Propulsion Application of Detonation Waves, AIAA Journal 38 (9) 1698-1708

KAILASANATH K. 2006 Liquid-Fueled Detonation in Tubes, Journal of Propulsion and Power 22 (6) 1261-1268

KASIMOV A. R. & STEWART D. S. 2004 On the dynamics of self-sustained one-dimensional detonations : A numerical study in the shock-attached frame, Physics of Fluids 16 3566-3578

KAWASAKI A., INAKAWA T., KASAHARA J., GOTO K., MATSUOKA K., MATSUO A. & FUNAKI I. 2019 Critical condition of inner cylinder radius for sustaining rotating detonation waves in rotating detonation thruster, Proceedings of the Combustion Institute 37 (3) 3461-3469

KIM K. H., KIM C. & RHO O. 2001 Methods for the Accurate Computations of Hypersonic Flow I. AUSMPW+ Scheme, Journal of Computational Physics 174 38-80

KINDRACKI J. 2015 Experimental research on rotating detonation in liquid fuel-gaseous air mixture, Aerospace Science and Technology 43 445-453

KOLEV N. I. 2007 Multiphase Flow Dynamics 2 Mechanical Interactions, Springer

KOROBEINIKOV V. 1989 On arising in dusty gas zones with high concentration of particles, Archivum Combustionis 9 149-152

LEE H. I. & STEWART D. S. 1990 Calculation of linear detonation instability: one-dimensional instability of plane detonation, Journal of Fluid Mechanics 216 103-132

LEE J. H. S. & RADULESCU M. I. 2005 On the Hydrodynamic Thickness of Cellular Detonations, Combustion, Explosion and Shock Waves 41 (6) 745-765

LEE J. H. S. 2008 The Detonation Phenomena, Cambridge University Press

LI J., FAN W. CHEN W., WANG K. & YAN C. 2011 Propulsive performance of a liquid kerosene/oxygen pulse detonation rocket engine, Experimental Thermal and Fluid Science 35 (1) 265-271

LIBOUTON J. C., JACQUES A. & VAN TIGGELEN P. J. 1981 Cinétique, structure et entretien des ondes de détonation, Actes du Colloque International Berthelot-Vieille-Mallard-LeChatelier 2 432-442

LING Y., WAGNER J. L., BERESH S. J., KEARNEY S. P. & BALACHANDAR S. 2012 Interaction of a planar shock wave with a dense particle curtain: Modeling and experiments, Physics of Fluids 24 113301

LIU Y., LIU X. & LI X. 2016 Numerical investigation of hydrogen detonation suppression with inert particle in pipeline, International Journal of Hydrogen Energy 41 (46) 21548-21563

LU T. & LAW C. K. 2004 Heterogeneous Effect in the Propagation and Quenching of Spray Detonations, Journal of Propulsion and Power 20 (5) 820-827

LU W., FAN W., WANG K., ZHANG Q. & CHI Y. 2017 Operation of a liquid-fueled and valveless pulse detonation rocket at high frequency, Proceedings of the Combustion Institute 36 (2) 2657-2664

MATSUOKA K., ESUMI M., IKEGUCHI K. B., KASAHARA J., MATSUO A. & FUNAKI I. Optical and thrust measurement of a pulse detonation combustor with a coaxial rotary valve, Combustion and Flame 159 (3) 1321-1338

MATSUOKA K., MOROZUMI T., TAKAGI S., KASAHARA J., MATSUO A. & FUNAKI I. 2016 Flight Validation of a Rotary-Valved Four-Cylinder Pulse Detonation Rocket, Journal of Propulsion and Power 32 (2) 383-391

MATSUOKA K., MUKAI T. & ENDO T. 2015 Development of a Liquid-Purge Method for High-Frequency Operation of Pulse Detonation Combustor, Combustion Science and Technology 187 (5) 2015 747-764

MATSUOKA K., TAKAGI S., KASAHARA J., MATSUO A. & FUNAKI I. 2018 Validation of Pulse-Detonation Operation in Low-Ambient-Pressure Environment, Journal of Propulsion and Power 34 (1) 116-124

MATSUOKA K., TAKI H., KASAHARA A., KASAHARA J., WATANABE H., MATSUO A. & ENDO T. 2019 Semi-valveless pulse detonation cycle at a kilohertz-scale operating frequency, Combustion and Flame 205 434-440

MAXWELL B. M., BHATTACHARJEE R. R., LAU-CHAPDELAINE S. S. M., FALLE S. A. E. G. SHARPE G. J. & RADULESCU M. I. 2017 Influence of turbulent fluctuation on detonation propagation, Journal of Fluid Mechanics 818 646-696

MCBRIDE B. J., GORDON S. & RENO M. A. 1993 Coefficients for Calculating Thermodynamic and Transport Properties of Individual Species, NASA Technical Memorandum, 4513

MCBRIDE B. J. & GORDON S. 1996. Computer Program for Calculation of Complex Chemical Equilibrium Composition and Applications, NASA Reference Publication 1311 1-178

MI X., TIMOFEEV E. V. & HIGGINS A. 2017 Effect of spatial discretization of energy on detonation wave propagation, Journal of Fluid Mechanics 817 306-338

MI X., HIGGINS A. J., NG H. D., KIYANDA C. B. & NIKIFORAKIS N. 2017 Propagation of gaseous detonation waves in a spatially inhomogeneous reactive medium, Physical Review Fluids 2 053201

MITKIN V. V. & THEOFANOUS T. G. 2017 The physics of aerobreakup IV. Strain-thickening liquid, Physics of Fluid 29 122101

MODAK A. U., MADRID A. A., DEPLANQUE J. P. & KEE R. J. 2006 The effect of mono-dispersed water mist on the suppression of laminar premixed hydrogen-, methane-, and propane-air flames, Combustion and Flame 144 103-111

MOHAN S., TRUNOV M. A. & DREIZIN E. L. 2008 Heating and Ignition of Metal Particles in the Transition Heat Transfer Regime, Journal of Heat Transfer 130 140505

MORII Y., TERASHIMA H., KOSHI M & SHIMIZU T. 2014 Comparison of Time Integration Method for Stiff Reaction Equations, Journal of the Combustion of Japan 56 (176) 156-165 (in Japanese)

MURRARY S. B. & THIBAULT P. A. 2009 Spray Detonation, Shock Wave Science and Technology Reference Library, Heterogeneous Detonation, Springer-Verlag Berlin Heidelberg

NEUFELD D. P., JANZEN A. R. & AZIZ R. A. 1972 Empirical Equations to Calculate 16 of the Transport Collision Integrals Ω(l,s)* for the Lennard-Jones (12-6) Potential, The Journal of Chemical Physics 57 (3) 1100-1102

NG H. D. 2005 The effect of chemical reaction kinetics on the structure of gaseous detonations, PhD thesis, McGill University

NG H. D., RADULESCU M. I., HIGGINS A. J., NIKIFORAKIS N. & LEE J. H. S. 2005 Numerical investigation of the instability for one-dimensional Chapman-Jouguet detonations with chain-branching kinetics, Combustion Theory and Modelling 9 (3) 385-401

NIEDZEILSKA U., KAPUSTA L. J., SAVARD B. & TEODORCZYK A. 2017 Influence of water droplets on propagating detonations, Journal of Loss and Prevention in the Process Industries 50 229-236

PAPALEXANDRIS M. V. 2004 Numerical simulation of detonation in mixture of gaseous and solid particles, Journal of Fluid Mechanics 507 95-142

PAPALEXANDRIS M. V. 2005 Influence of inert particles on the propagation of multidimensional detonation waves, Combustion and Flame 141 (3) 216-228

PARMAR M., HASELBACHER A. & BALACHANDAR S. 2010 Improved drag correlation for spheres and application to shock-tube experiments, AIAA Journals 48 1273-1276

PETROVA T. & DOOLEY R. B. 2014 Revised Release on Surface Tension of Ordinary Water Substance, The International Association for the Properties of Water and Steam. Mascow, Russia, June

PILCH M. & ERDMAN C. A. 1987 Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop, International Journal of Multiphase Flow 13 (6) 741-757

PINAEV A. V. & SYCHEV A. I. 1982 Ignition of fuel droplets behind a shock wave front, Combustion, Explosion and Shock Waves 18 (6) 682-689

POLING B. E., PRAUSNITZ J. M. & O’CONNEL J. P. 2001 The properties of gases and liquids, Fifth Edition, McGRAW-HILL Education

RADULESCU M. I. 2003 The propagation and failure mechanics of gaseous detonations: experiments in porous – walled tubes, PhD thesis, McGill University

RADULESCU M. I. & BROZOU B. 2018 Dynamics of detonations with a constant mean flow divergence, Journal of Fluid Mechanics 845 346-377

RADULESCU M. I., SHARPE G. J., LAW C. K. & LEE J. H. S. 2007 The hydrodynamic structure of unstable cellular detonations, Journal of Fluid Mechanics 580 31-81

RAGLAND K. W., DABORA E. K., & NICHOLLS J. A. 1968 Observed Structure of Spray Detonation, Physics of Fluids 11 2377-2388

RANGER A. A. & NICHOLLS J. A. 1969 Aerodynamic Shattering of Liquid Drops, AIAA Journal 7 (2) 285-290

RANKIN B. A., CODONI J. R., CHO K. Y., HOKE J. L. & SCHAUER F. R. 2019 Investigation of the structure of detonation waves in a non-premixed hydrogen-air rotating detonation engine using mid-infrared imaging, Proceedings of the Combustion Institute 37 (3) 3479-3486

RANZ W. E. & MARSHALL JR W. R. 1952 Evaporation from drops Part I, Chemical Engineering Progress 48 (3) 141-146

REYNAUD M., VIROT F. & CHINNAYYA A. 2017 A Computational study of the interaction of gaseous detonations with a compressible layer, Physics of Fluids 29 056101

ROY G. D., FROLOV S. M., BORISOV A. A. & NETZER D. W. 2004 Pulse detonation propulsion: challenges, current status and future perspective, Progress in Energy and Combustion Science 30 (6) 545-672

RUDINGER G. 1964 Some Properties of Shock Relaxation in Gas Flow Carrying Small Particles, Physics of Fluids 7 658-663

SANGANI A. S., ZHANG D. Z. & PROSPERETTI A. 1991 The added mass, basset, and viscous drag coefficients in nondilute bubbly liquids undergoing small-amplitude oscillatory motion, Physics of Fluids A 3 2955-2970

SAUREL R. & LEMETAYER O. 2001 A multiphase model for compressible flows with interfaces, shock, detonation waves and cavitation, Journal of Fluid Mechanics 431 239-271

SCHWER D. A. & KAILASANATH K. 2009 Direct comparison of particle-tracking and sectional approaches for shock driven flows, International Journal of Spray and Combustion Dynamics 1 (1) 1-38

SHARPE G. J. & RADULESCU M. I. 2011 Statistical analysis of cellular detonation dynamics from numerical simulation: one-step chemistry, Combustion Theory and Modeling 15 (5) 691-723

SHEPERD J. E. 2009 Detonation in gases, Proceedings of the Combustion Institute 32 (1) 83-98

SHIMA E. & MORII Y. 2015 Dual time stepping method for chemical kinetics ODEs, 9th Mediterranean Combustion Symposium, Greece, June 7-11

SHIMURA. K & MATSUO A. 2018 Two-dimensional CFD-DEM simulation of vertical shock wave-induced dust lifting processes, Shock Waves 28 1285-1297

SHU C. W. & OSHER S. 1988 Efficient implementation of essentially non-oscillatory shock-capturing schemes, Journal of Computational Physics 77 439-471

SINGH D. J. & JACHIMOWSKI C. J. 1993 Quasiglobal Reaction Model for Ethylene Combustion, AIAA Journal 32 (1) 213-216

SMIRNOV N. N., NIKITIN V. F., KHADEM J. & ALYARI-SHOUREKHDELI Sh. 2007 Onset of detonation in polydispersed fuel-air mixtures, Proceedings of the Combustion Institute 31 (2) 2195-2204

SOLOUKHIN R. I. 1966 Multiheaded structure of gaseous detonation, Combustion and Flame 10 (1) 1966 51-58

SOW A., CHINNAYYA A. & HADJADJ A. 2014 Mean structure of one-dimensional unstable detonations with friction, Journal of Fluid Mechanics 743 503-533

SOW A., CHINNAYYA A. & HADJADJ A. 2015 Computational study of non-ideal and mildly-unstable detonation waves, Computer and Fluids 119 47-57

SOW A., CHINNAYYA A. & HADJADJ A. 2019 On the viscous boundary layer of weakly unstable detonation in narrow channels, Computer and Fluids 179 449-458

STEWART D. S. & KASIMOV A. R. 2005 Theory of detonation with an embedded sonic locus, SIAM Journal on Applied Mathematics 66 (2) 384-407

SUN R. & XIAO H. 2015 Diffusion-based coarse graining in hybrid continuum-discrete solvers: Theoretical formulation and a priori tests, International Journal of Multiphase Flow 77 142-157

SUNDARAM D. S., PURI P. & YANG V. 2016 A general theory of ignition and combustion of nano- and micron-sized particles, Combustion and Flame 169 94-109

TAILEB S., REYNAUD M., CHINNAYYA A., VIROT F. & BAUER P. 2018 Numerical study of 3D gaseous detonation in a square channel, Aerrotecnica Missili & Spazio, The Journal of Aerospace Science, Technology and Systems 97 (2) 96-102

TAYLOR E. M., WU M. & MARTIN M. P. 2007 Optimization of nonlinear error for weighted essentially non-oscillatory methods in direct numerical simulations of compressible flow, Journal of Computational Physics 223 384-397

TERASHIMA H. & KOSHI M. 2013 Development and Assessment of an Efficient Method for Simulating Compressible Reacting Flows with Large Detailed Chemical Kinetics, Journal of the Combustion of Japan 55 (174) 411-421 (in Japanese)

THEOFANOUS T. G. 2011 Aerobreakup of Newtonian and Viscoelastic Liquids, Annual Review of Fluids Mechanics 43 661-690

THEOFANOUS T. G. & LI G. J. 2008 On the physics of aerobreakup, Physics of Fluids 20 052103

THEOFANOUS T. G., LI G. J. & DINH T. N. 2004 Aerobreakup in Rarefied Supersonic Gas Flows, Journal of Fluids Engineering 126 (4) 516-527

THEOFANOUS T. G., LI G. J., DINH T. N. & CHANG C-H 2007 Aerobreakup in disturbed subsonic and supersonic flow fields, Journal of Fluid Mechanics 593 131-170

THEOFANOUS T. G., MITKIN V. V., CHANG C-H., DENG X. & SUSHCHIKH S. 2012 The physics of aerobreakup. II. Viscous liquids, Physics of Fluids 24 022104

THEOFANOUS T. G., MITKIN V. V. & NG C. L. 2013 The physics of aerobreakup III Viscoelastic liquid, Physics of Fluid 25 032101

THOMAS G. O., EDWARDS M. J. & EDWARDS D. H. 1990 Studies of Detonation Quenching by Water Spray, Combustion Science and Technology 71 233-245

THOMAS G. O. 2000 On the condition required for explosion mitigation by water sprays, Trans IChemE 78 339-354

TORO E. F. 2009 Riemann Solvers and Numerical Methods for Fluid Dynamics A Practical Introduction Third Edition, Springer

TULEY R., DANBY M. SHRIMPTON J. & PALMER M. 2010 On the optimal numerical time integration for Lagrangian DEM within implicit flow solvers, Computer and Chemical Engineering 34 (6) 886-899

UTHEZA F., SAUREL R., DANIEL E. & LORAUD J. 1996 Droplet break-up through an oblique shock wave, Shock Waves 5 (5) 265-273

WANG K., FAN W., LU W., CHEN F., ZHANG Q. & YAN C. 2014 Study on a liquid-fueled and valveless pulse detonation rocket engine without the purge process, Energy 71 605-614

WARNATZ J., MAAS U. & DIBBLE R. W. 2006 Combustion Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation 4th Edition, Springer

WASSILJEWA A. 1904 Heat Conduction in Gas Mixture, Physicalische zeitschrift 5 737-742

WEBER M. & OLIVIER H. 2004 The thickness of detonation wave visualized by slight obstacles, Shock Waves 13 (5) 351-365

WEN C. Y. & Yu Y. H. 1966 Mechanics of fluidization, Chemical Engineering Progress Symposium Series, 62 100-111

WILKE C. R. 1950 A Viscosity Equation for Gas Mixtures, The Journal of Chemical Physics 18 (4) 517-519

WINGERDEN K. V., WILKINS B., BAKKEN J. & PEDERSEN G. 1995 The influence of water sprays on gas explosions Part 2: mitigation, Journal of Loss Prevention in the Process Industries 8 (2) 61-70

WOLANSKI P. 2013 Detonative propulsion, Proceedings of the Combustion Institute 34 (1) 125-158

WONG S. H. & LIN A. R. 1992 Internal temperature distributions of droplet vaporizing in high-temperature convective flows, Journal of Fluid Mechanics 237 671-687

ZEOLI N. & GU S. 2006 Numerical modelling of droplet break-up for gas atomization, Computational Materials Science 38 282-292

ZHANG F. 2009 Detonation of Gas – Particle Flow, Shock Wave Science and Technology Reference Library, Heterogeneous Detonation, Springer-Verlag, Berlin Heidelberg

ZHANG Q., FAN W., WANG K., LU W., CHI Y. & WANG Y. 2016 Impact of nozzles on a valveless pulse detonation rocket engine without the purge process, Applied Thermal Engineering 100 1161-1168

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る