リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Electrochemical Synthesis of Diamond in Molten LiCl-KCl-K₂CO₃-KOH」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Electrochemical Synthesis of Diamond in Molten LiCl-KCl-K₂CO₃-KOH

Norikawa, Yutaro Horiba, Yurina Yasuda, Kouji Nohira, Toshiyuki 京都大学 DOI:10.1149/1945-7111/acd4f4

2023.05

概要

We propose a novel diamond synthesis method based on molten salt electrolysis. In our method, carbon deposition and hydrogen generation occur simultaneously, and hydrogen reacts selectively with carbon atoms that possess sp² hybrid orbitals to form CH₄ gas. Therefore, only carbon with sp³ hybrid orbitals grows to form a diamond. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Raman spectroscopy analysis confirmed that diamond was synthesized by potentiostatic electrolysis at 1.1 V vs Li⁺/Li with a 10 C cm⁻² charge density in molten LiCl–KCl–K₂CO₃–KOH at 973 K.

この論文で使われている画像

参考文献

Figure 4. (a), (b) SEM images of the sample obtained by potentiostatic

electrolysis at 1.10 V vs Li+/Li with 10 C cm−2 in molten LiCl–KCl–K2CO3

(0.05 mol%)–KOH (1.0 mol%) at 973 K.

Acknowledgments

This work was supported by JSPS KAKENHI [Grant Number

JP21K19024]. We thank Koji Hidaka and Seigo Maruyama for their

contributions to establishing the foundation for this study.

ORCID

Yutaro Norikawa https://orcid.org/0000-0002-0861-5443

Kouji Yasuda https://orcid.org/0000-0001-5656-5359

Toshiyuki Nohira https://orcid.org/0000-0002-4053-554X

1. N. Tran, Q. T. H. Ta, and P. K. T. Nguyen, Int. J. Energy Res., 46, 17926

(2022).

2. H. V. Ijije, R. C. Lawrence, and G. Z. Chen, RSC Adv., 4, 35808 (2014).

3. D. Chery, V. Lair, and M. Cassir, Front. Energy Res., 3, 43 (2015).

4. R. Jiang, M. Gao, X. Mao, and D. Wang, Curr. Opin. Electrochem., 17, 38

(2019).

5. Y. Chen, M. Wang, J. Zhang, J. Tu, J. Ge, and S. Jiao, J. Mater. Chem. A, 9, 14119

(2021).

6. F. Zhu, J. Ge, Y. Gao, S. Li, Y. Chen, J. Tu, M. Wang, and S. Jiao, Explor., 3,

20210186 (2023).

7. H. Kawamura and Y. Ito, J. Appl. Electrochem., 30, 571 (2000).

8. B. Kaplan, H. Groult, S. Komaba, N. Kumagai, and F. Lantelme, Chem. Lett., 30,

714 (2001).

9. S. Licht, B. Wang, S. Ghosh, H. Ayub, D. Jiang, and J. Ganley, J. Phys. Chem.

Lett., 1, 2363 (2010).

10. K. Otake, H. Kinoshita, T. Kikuchi, and R. O. Suzuki, Electrochim. Acta, 100, 293

(2013).

11. H. Yin, X. Mao, D. Tang, W. Xiao, L. Xing, H. Zhu, D. Wang, and D. R. Sadoway,

Energy Environ. Sci., 6, 1538 (2013).

12. L. Li, Z. Shi, B. Gao, J. Xu, X. Hu, and Z. Wang, J. Electrochem. Soc., 163, E1

(2016).

13. J. Ge, S. Wang, L. Hu, J. Zhu, and S. Jiao, Carbon, 98, 649 (2016).

14. B. Deng, J. Tang, M. Gao, X. Mao, H. Zhu, W. Xiao, and D. Wang, Electrochim.

Acta, 259, 975 (2018).

15. Y. Yu, Z. Li, W. Zhang, W. Li, D. Ji, Y. Liu, Z. He, and H. Wu, New J. Chem., 42,

1208 (2018).

16. S. Abbasloo, M. Ojaghi-Ilkhchi, and M. Mozammel, JOM, 71, 2103 (2019).

17. M. A. Hughes, R. D. Bennett, J. A. Allen, and S. W. Donne, RSC Adv., 9, 36771

(2019).

18. H.-J. Luo, Y. Xue, Y.-H. Zheng, Y.-D. Yan, F.-Q. Ma, M.-L. Zhang, T.-Q. Yin,

F. Gao, and M. Qiu, ECS J. Solid State Sci. Technol., 8, M122 (2019).

19. X. Chen, Z. Zhao, J. Qu, B. Zhang, X. Ding, Y. Geng, H. Xie, D. Wang, and H. Yin,

ACS Sustain. Chem. Eng., 9, 4167 (2021).

20. Z. Chen, Y. Gu, L. Hu, W. Xiao, X. Mao, H. Zhu, and D. Wang, J. Mater. Chem. A,

5, 20603 (2017).

21. L. Hu, Z. Yang, W. Yang, M. Hu, and S. Jiao, Carbon, 144, 805 (2019).

22. Y. Chen, M. Wang, S. Lu, J. Tu, and S. Jiao, Electrochim. Acta, 331, 135461

(2020).

23. I. A. Novoselova, N. F. Oliinyk, S. V. Volkov, A. A. Konchits, I. B. Yanchuk, V.

S. Yefanov, S. P. Kolesnik, and M. V. Karpets, Physica E: Low-dimens. Syst. and

Nanostruct., 40, 2231 (2008).

24. A. Douglas, N. Muralidharan, R. Carter, and C. L. Pint, ACS Sustain. Chem. Eng.,

5, 7104 (2017).

25. L. Hu, Y. Song, J. Ge, J. Zhu, Z. Han, and S. Jiao, J. Mater. Chem. A, 5, 6219

(2017).

26. M. Johnson, J. Ren, M. Lefler, G. Licht, J. Vicini, X. Liu, and S. Licht, Mater.

Today Energy, 5, 230 (2017).

27. J. Ren, M. Johnson, R. Singhal, and S. Licht, J. CO2 Util., 18, 335 (2017).

28. H. Wu, Z. Li, D. Ji, Y. Liu, G. Yi, D. Yuan, B. Wang, and Z. Zhang, RSC Adv., 7,

8467 (2017).

29. Z. Li, D. Yuan, H. Wu, W. Li, and D. Gu, Inorg. Chem. Front., 5, 208 (2018).

30. K. W. M. Jin, M. Gakim, J. A. Jananun, W. Y. Liew, and N. J. Siambun, Int. J.

Electrochem. Sci., 13, 9771 (2018).

31. S. Arcaro, F. A. Berutti, A. K. Alves, and C. P. Bergmann, Appl. Surf. Sci., 466, 367

(2019).

32. Z. Li, G. Wang, W. Zhang, Z. Qiao, and H. Wu, J. Electrochem. Soc., 166, D415

(2019).

33. X. Liu, J. Ren, G. Licht, X. Wang, and S. Licht, Adv. Sustain. Syst., 3, 1900056

(2019).

34. K. Moyer, M. Zohair, J. Eaves-Rathert, A. Douglas, and C. L. Pint, Carbon, 165, 90

(2020).

35. S. Koizumi, C. Nebel, and M. Nesladek, Phys. Appl. CVD Diam. (Wiley-VCH,

Weinheim) (2008).

36. J. Asmussen and D. Reinhard, Diamond Films Handbook (CRC Press, Boca Raton,

FL)(Boca Raton) (2002).

37. Y. Kanzaki and M. Takahashi, J. Electroanl. Chem., 58, 349 (1975).

38. K. Maeda, K. Yasuda, T. Nohira, R. Hagiwara, and T. Homma, J. Electrochem.

Soc., 162, D444 (2015).

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る