リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Electrodeposition of Crystalline Si Using a Liquid Zn Electrode in Molten KF-KCl-K₂SiF₆」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Electrodeposition of Crystalline Si Using a Liquid Zn Electrode in Molten KF-KCl-K₂SiF₆

Moteki, Wataru Norikawa, Yutaro Nohira, Toshiyuki 京都大学 DOI:10.1149/1945-7111/acd9ef

2023.06

概要

In this study, we propose a novel Si electrodeposition method using a liquid Zn electrode in molten KF–KCl. Electrochemical measurements and electrolysis were conducted in a KF–KCl–K₂SiF₆ melt at 923 K. Cyclic voltammograms at a liquid Zn electrode revealed that the reduction currents at 0.75–1.0 V vs K⁺/K were attributed to the formation of Si–Zn liquid alloy. Additionally, Si was deposited through potentiostatic electrolysis at 0.75 V using liquid Zn in a boron nitride (BN) crucible as an electrode. Cross-sectional scanning electron microscopy and energy-dispersive X-ray spectroscopy showed that deposited Si was located at the bottom and side of the interface between Zn and the BN crucible instead of at the interface between Zn and the molten salt, indicating the electrodeposition of Si attributed to Si–Zn liquid alloy formation. The obtained Si was confirmed to be the crystalline form by X-ray diffractometry, and the maximum grain size was approximately 2 mm. Galvanostatic electrolysis at –20 mA cm⁻² with varying electrical charges showed that the Si grain size increased with increasing charge, confirming the growth of crystalline Si. Finally, the mechanism of Si electrodeposition on a Zn electrode through Si–Zn alloying was discussed.

この論文で使われている画像

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

Photovoltaic Market 2021, (RTS Corp, Tokyo, Japan) (2021), [Japanese].

K. Yasuda and T. Nohira, High. Temp. Mater. Proc., 41, 247 (2022).

U. Cohen and R. A. Huggins, J. Electrochem. Soc., 123, 381 (1976).

G. M. Rao, D. Elwell, and R. S. Feigelson, J. Electrochem. Soc., 127, 1940 (1980).

D. Elwell and R. S. Feigelson, Sol. Energy, Mat., 6, 123 (1982).

K. S. Osen, A. M. Martinez, S. Rolseth, H. Gudbrandsen, M. Juel, and G.

M. Haarberg, ECS Trans., 33, 429 (2010).

A. L. Bieber, L. Massot, M. Gibilaro, L. Cassayre, P. Taxil, and P. Chamelot,

Electrochim. Acta, 62, 282 (2012).

G. M. Haarberg, L. Famiyeh, A. M. Martinez, and K. S. Osen, Electrochim. Acta,

100, 226 (2013).

Y. Hu, X. Wang, J. Xiao, J. Hou, S. Jiao, and H. Zhu, J. Electrochem. Soc., 160,

D81 (2013).

Y. Sakanaka and T. Goto, Electrochim. Acta, 164, 139 (2015).

Y. Suzuki, Y. Inoue, M. Yokota, and T. Goto, J. Electrochem. Soc., 166, D564

(2019).

R. Boen and J. Bouteillon, J. App. Electrochem., 13, 277 (1983).

T. Matsuda, S. Nakamura, K. Ide, K. Nyudo, S. Yae, and Y. Nakato, Chem. Lett., 7,

569 (1996).

S. V. Devyatkin, J. Min. Metall. Sect. B., 39, 303 (2003).

J. Zhao, H. Yin, T. Lim, H. Xie, H. Hsu, F. Forouzan, and A. J. Bard,

J. Electrochem. Soc., 163, 506 (2016).

Y. Sakanaka, A. Murata, T. Goto, and K. Hachiya, J. Alloy. Compd., 695, 2131

(2017).

17. X. Yang, L. Ji, X. Zou, T. Lim, J. Zhao, E. T. Yu, and A. J. Bard, Angew. Chem. Int.

Ed., 56, 15078 (2017).

18. X. Zou, L. Ji, X. Yang, T. Lim, E. T. Yu, and A. J. Bard, J. Am. Chem. Soc., 139,

16060 (2017).

19. Y. Zhang, Y. Zhang, X. Li, J. Liu, M. Zhang, X. Yang, M. Huang, M. Xu, P. Dong,

and Z. Zhou, JOM, 72, 2245 (2020).

20. A. A. Andriiko, E. V. Panov, O. I. Boiko, B. V. Yakovlev, and O. Y. Borovik, Russ.

J. Electrochem., 33, 1343 (1997).

21. S. V. Kuznetsova, V. S. Dolmatov, and S. A. Kuznestov, Russ. J. Electrochem., 45,

797 (2009).

22. Y. P. Zaykov, S. I. Zhuk, A. V. Isakov, O. V. Grishenkova, and V. A. Isaev, J. Solid

State Electrochem., 19, 1341 (2015).

23. J. Peng, H. Yin, J. Zhao, X. Yang, A. J. Bard, and D. R. Sadoway, Adv. Funct.

Mater., 28, 1703551 (2017).

24. S. Zhuk, V. Isaev, O. Grishenkova, A. Isakov, A. Apisarov, and Y. Zaykov, J. Serb.

Chem. Soc., 82, 51 (2017).

25. S. I. Zhuk, A. V. Isakov, A. P. Apisarov, O. V. Grishenkova, V. A. Isaev, E.

G. Vovkotrub, and Y. P. Zaykov, J. Electrochem. Soc., 164, 5135 (2017).

26. K. Maeda, K. Yasuda, T. Nohira, R. Hagiwara, and T. Homma, J. Electrochem.

Soc., 162, D444 (2015).

27. K. Yasuda, K. Maeda, T. Nohira, R. Hagiwara, and T. Homma, J. Electrochem.

Soc., 163, D95 (2016).

28. K. Yasuda, K. Maeda, R. Hagiwara, T. Homma, and T. Nohira, J. Electrochem.

Soc., 164, D67 (2017).

29. K. Yasuda, K. Saeki, T. Kato, R. Hagiwara, and T. Nohira, J. Electrochem. Soc.,

165, D825 (2018).

30. K. Yasuda, T. Kato, Y. Norikawa, and T. Nohira, J. Electrochem. Soc., 168, 112502

(2021).

31. J. R. Rumble, CRC Handbook of Chemistry and Physics (Boca Raton)(CRC Press)

99th ed. (2018).

32. J. Gu, E. Fahrenkrug, and S. Maldonado, J. Am. Chem. Soc., 135, 1684 (2013).

33. E. Fahrenkrug and S. Maldonado, Acc. Chem. Res., 48, 1881 (2015).

34. L. Ma, S. Lee, J. DeMuth, and S. Maldonado, RSC Adv., 6, 78818 (2016).

35. J. Zhang, S. Chen, H. Zhang, S. Zhang, X. Yao, and Z. Shi, RSC Adv., 6, 12061

(2016).

36. G. M. Haarberg, T. Kato, Y. Norikawa, and T. Nohira, ECS Trans., 89, 29

(2019).

37. R. W. Olesinski and G. J. Abbaschian, Bull. Alloy Phase Diagrams, 6, 545

(1985).

38. Y. Ma, K. Yasuda, A. Ido, T. Shimao, M. Zhong, R. Hagiwara, and T. Nohira,

Mater. Trans., 62, 403 (2021).

39. A. D. Pelton, Bull. Alloy Phase Diagrams, 8, 548 (1987).

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る