リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Model based estimation of QT intervals in non-invasive fetal ECG signals.」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Model based estimation of QT intervals in non-invasive fetal ECG signals.

Namareq Widatalla Yoshiyuki Kasahara Yoshitaka Kimura Ahsan Khandoker 東北大学 DOI:10.1371/journal.pone.0232769

2020.05.01

概要

The end timing of T waves in fetal electrocardiogram (fECG) is important for the evaluation of ST and QT intervals which are vital markers to assess cardiac repolarization patterns. Moni- toring malignant fetal arrhythmias in utero is fundamental to care in congenital heart anomalies preventing perinatal death. Currently, reliable detection of end of T waves is possible only by using fetal scalp ECG (fsECG) and fetal magnetocardiography (fMCG). fMCG is expensive and less accessible and fsECG is an invasive technique available only during intrapartum period. Another safer and affordable alternative is the non-invasive fECG (nfECG) which can provide similar assessment provided by fsECG and fMECG but with less accuracy (not beat by beat). Detection of T waves using nfECG is challenging because of their low amplitudes and high noise. In this study, a novel model-based method that estimates the end of T waves in nfECG signals is proposed. The repolarization phase has been modeled as the discharging phase of a capacitor. To test the model, fECG signals were collected from 58 pregnant women (age: (34 ± 6) years old) bearing normal and abnormal fetuses with gestational age (GA) 20-41 weeks. QT and QTc intervals have been calculated to test the level of agreement between the model-based and reference values (fsECG and Doppler Ultrasound (DUS) sig- nals) in normal subjects. The results of the test showed high agreement between model- based and reference values (difference < 5%), which implies that the proposed model could be an alternative method to detect the end of T waves in nfECG signals.

この論文で使われている画像

関連論文

参考文献

1. Sameni R, Clifford G. A Review of Fetal ECG Signal Processing; Issues and Promising Directions. Open Pacing Electrophysiol Ther J. 2010 Jan; 3: 4–20. https://doi.org/10.2174/ 1876536X01003010004 PMID: 21614148

2. Velayo C, Funamoto K, Silao J, et al. Evaluation of Abdominal Fetal Electrocardiography in Early Intra- uterine Growth Restriction. Front Physiol. 2017 Jun; 8(437).

3. Kwon J, Park Y. Fetal Heart Rate Monitoring: from Doppler to Computerized Analysis. Obstet Gynecol Sci. 2016 Mar; 59(2): 79–84. https://doi.org/10.5468/ogs.2016.59.2.79 PMID: 27004196

4. J. Wolfberg A. The Future of Fetal Monitoring. Rev Obstet Gynecol. 2012; 5(3-4): e132–e136.

5. Strand S, Strasburger J, Wakai R. Fetal Magnetocardiogram Waveform Characteristics. Physiol. Meas. 2019 Mar; 40(3). https://doi.org/10.1088/1361-6579/ab0a2c PMID: 30802886

6. Strand S, Lutter W, Strasburger J, et al. Low-Cost Fetal Magnetocardiography: A Comparison of Super- conducting Quantum Interference Device and Optically Pumped Magnetometers. J. Am. Heart Assoc. 2019 Aug; 8(16). https://doi.org/10.1161/JAHA.119.013436 PMID: 31394997

7. Strasburger J, Cheulkar B, Wakai R. Magnetocardiography for Fetal Arrhythmias. Heart Rhythm. 2008 Jul; 5(7): 1073–1076. https://doi.org/10.1016/j.hrthm.2008.02.035 PMID: 18486565

8. Donofrio M, Moon-Grady A, Hornberger L, et al. Diagnosis and Treatment of Fetal Cardiac Disease: A Scientific Statement from the American Heart Association. Circulation. 2014 May; 129(21): 2183– 2242. https://doi.org/10.1161/01.cir.0000437597.44550.5d PMID: 24763516

9. Clifford G, Silva I, Behar J, et al. Noninvasive Fetal ECG analysis. Physiol Meas. 2014 Aug; 35(8): 1521–1536. https://doi.org/10.1088/0967-3334/35/8/1521 PMID: 25071093

10. Su L, Wu HT. Extract Fetal ECG from Single-Lead Abdominal ECG by De-Shape Short Time Fourier Transform and Nonlocal Median. Front. Appl. Math. Stat. 2017 Feb; 3(2).

11. Behar J, Zhu T, Oster J, et al. Evaluation of the Fetal QT Interval using Non-Invasive Fetal ECG Tech- nology. Physiol Meas. 2016 Sep; 37(9): 1392–1403. https://doi.org/10.1088/0967-3334/37/9/1392 PMID: 27480078

12. Khandoker A, Ibrahim E, Oshio S, et al. Validation of Beat by Beat Fetal Heart Signals Acquired from Four-Channel Fetal Phonocardiogram with Fetal Electrocardiogram in Healthy Late Pregnancy. Sci Rep. 2018 Sep; 8. https://doi.org/10.1038/s41598-018-31898-1 PMID: 30206289

13. Elgendi M, Eskofier B, Abbott D. Fast T Wave Detection Calibrated by Clinical Knowledge with Annota- tion of P and T Waves. Sensors (Basel). 2015 Jul; 15(7): 17693–17714. https://doi.org/10.3390/ s150717693

14. Oudijk M, Kwee A, Visser G, et al. The Effects of Intrapartum Hypoxia on the Fetal QT. BJOG. 2004 Jul; 111(7): 656–660. https://doi.org/10.1111/j.1471-0528.2004.00178.x PMID: 15198754

15. Noble D. From the Hodgkin-Huxley Axon to the Virtual Heart. J Physiol. 2007 Apr; 580(1): 15–22. https://doi.org/10.1113/jphysiol.2006.119370 PMID: 17023502

16. Parodi M, Storace M. On a Circuit Representation of the Hodgkin and Huxley Nerve Axon Membrane Equations. Int J Circ Theor App. 1997 Apr; 25(2): 115–124. https://doi.org/10.1002/(SICI)1097-007X (199703/04)25:2%3C115::AID-CTA957%3E3.0.CO;2-%23

17. Alexander C, Sadiku M. Fundamentals of Electric Circuits: 3rd (Third) edition: McGraw-Hill. 2006.

18. Grunnet M. Repolarization of the Cardiac Action Potential. Does an Increase in Repolarization Capacity Constitute a New Anti-Arrhythmic Principle?. Acta Physiol. 2010 Feb; 198(676): 1–48. https://doi.org/ 10.1111/j.1748-1716.2009.02072.x

19. Draghici A, Taylor J. The Physiological Basis and Measurement of Heart Rate Variability in Humans. J Physiol Anthropol. 2016 Sep; 35(1). https://doi.org/10.1186/s40101-016-0113-7 PMID: 27680542

20. Vahedi F, Haney M, Jensen S, et al. Effect of Heart Rate on Ventricular Repolarization in Healthy Indi- viduals Applying Vectorcardiographic T Vector and T Vector Loop Analysis. Ann Noninvasive Electro- cardiol. 2011 Jul; 16(3): 287–294. https://doi.org/10.1111/j.1542-474X.2011.00444.x PMID: 21762257

21. Bernardo D, Langley P, Murray A. Effect of Changes in Heart Rate and in Action Potential Duration on the Electrocardiogram T Wave Shape. Physiol Meas. 2002 May; 23(2): 355–364. https://doi.org/10. 1088/0967-3334/23/2/311 PMID: 12051307

22. Sato M, Kimura Y, Chida S, et al. A Novel Extraction Method of Fetal Electrocardiogram From the Com- posite Abdominal Signal. IEEE Trans Biomed Eng. 2007 Jan; 54(1): 49–58. https://doi.org/10.1109/ TBME.2006.883791 PMID: 17260855

23. Khandoker A, Kimura Y, Ito T, et al. Antepartum Non-Invasive Evaluation of Opening and Closing Tim- ings of the Cardiac Valves in Fetal Cardiac Cycle. Med Biol Eng Comput. 2009 Oct; 47(10): 1075– 1082. https://doi.org/10.1007/s11517-009-0528-y PMID: 19711109

24. Alnuaimi S, Jimaa S, Kimura Y, et al. Identification of Fetal Cardiac Timing Events by Swarm Decompo- sition of Doppler Cardiogram Signal. Cinc. 2018; Maastricht.

25. Alnuaimi S, Jimaa S, Khandoker A. Fetal Cardiac Doppler Signal Processing Techniques: Challenges and Future Research Directions. Front Bioeng Biotechnol. 2017 Dec; 5(82). https://doi.org/10.3389/ fbioe.2017.00082 PMID: 29312932

26. Marzbanrad F, Khandoker A, Kimura Y, et al. Assessment of Fetal Development Using Cardiac Valve Intervals. Front Physiol. 2017 May; 8(313).

27. Marzbanrad F, Kimura Y, Funamoto K, et al. Automated Estimation of Fetal Cardiac Timing Events From Doppler Ultrasound Signal Using Hybrid Models. IEEE J Biomed health. 2014 Jul; 18(4): 1169– 1177. https://doi.org/10.1109/JBHI.2013.2286155

28. Mozos I, Costea C, Serban C, et al. Factors Associated with a Prolonged QT Interval in Liver Cirrhosis Patients. J Electrocardiol. 2011 Apr; 44(2): 105–108. https://doi.org/10.1016/j.jelectrocard.2010.10.034 PMID: 21146831

29. Bazett H. An Analysis of the Time-Relations of Electrocardiograms. Heart. 1920 Oct; 7: 353–370.

30. Fridericia LS. Die Systolendauer im Elektrokardiogramm Bei Normalen Menschen und Bei Herzkran- ken. Acta Med Scand. 1920 Dec; 53: 469–486. https://doi.org/10.1111/j.0954-6820.1920.tb18266.x

31. Sagie A, Larson M, Goldberg R, et al. An Improved Method for Adjusting the QT Interval for Heart Rate (the Framingham Heart Study). Am J Cardiol. 1992 Sep; 70: 797–801. https://doi.org/10.1016/0002- 9149(92)90562-d PMID: 1519533

32. Hodges M, Salerno D, Erlinen D. Bazett’s QT Correction Reviewed: Evidence that a Linear QT Correc- tion for Heart Rate is Better. J Am Coll Cardiol. 1983; 1(694).

33. Benatar A, Decraene T. Comparison of Formulae for Heart Rate Correction of QT Interval in Exercise ECGs from Healthy Children. Heart. 2001 Aug; 86(2): 199–201. https://doi.org/10.1136/heart.86.2.199 PMID: 11454842

34. Qiu H, Bird G, Qu L, et al. Evaluation of QT Interval Correction Methods in Normal Pediatric Resting ECGs. Cinc. 2007; North Carolina.

35. Vandenberk B, Vandael E, Robyns T, et al. Which QT Correction Formulae to Use for QT Monitoring?. J Am Heart Assoc. 2016 Jun; 5(6). https://doi.org/10.1161/JAHA.116.003264 PMID: 27317349

36. Malik M. Problems of Heart Rate Correction in Assessment of Drug-Induced QT Interval Prolongation. J Cardiovasc Electrophysiol. 2001 Apr; 12(4): 411–420. https://doi.org/10.1046/j.1540-8167.2001. 00411.x PMID: 11332559

37. Funck-Brentano C, Jaillon P. Rate-Corrected QT Iinterval: Techniques and Limitations. Am J Cardiol. 1993 Aug; 72(6): 17B–22B. https://doi.org/10.1016/0002-9149(93)90035-b PMID: 8256750

38. Wernicke J, Faries D, Breitung R, et al. QT Correction Methods in Children and Adolescents. J Cardio- vasc Electrophysiol. 2005 Jan; 16(1): 76–81. https://doi.org/10.1046/j.1540-8167.2005.03520.x PMID: 15673393

39. Phan D, Silka M, Lan Y, et al. Comparison of Formulas for Calculation of the Corrected QT Interval in Infants and Young Children. J Pediatr. J Cardiovasc Electrophysiol. 2015 Apr; 166(4).

40. Bland J, Altman D. Measuring Agreement in Method Comparison Studies. Stat Methods Med Res. 1999 Jun; 8(2): 135–160. https://doi.org/10.1177/096228029900800204 PMID: 10501650

41. Bland J, Altman D. Applying the Right Statistics: Analyses of Measurement Studies. Ultrasound Obstet Gynecol. 2003 Jul; 22(1): 85–93. https://doi.org/10.1002/uog.122 PMID: 12858311

42. Konarzewska H, Peeters G, Sanguinetti M. Repolarizing K+ Currents in Nonfailing Human Hearts. Simi- larities Between Right Septal Subendocardial and Left Subepicardial Ventricular. Circulation. 1995 Sep; 92(5): 1179–1187. https://doi.org/10.1161/01.cir.92.5.1179 PMID: 7648663

43. Furutani K, Tsumoto K, Chen I, et al. Facilitation of IKr Current by Some hERG Channel Blockers Sup- presses Early Afterdepolarizations. J Gen Physiol. 2019 Feb; 151(2): 214–230. https://doi.org/10.1085/ jgp.201812192 PMID: 30674563

44. Gima K, Rudy Y. Ionic Current Basis of Electrocardiographic Waveforms A Model Study. Circ Res. 2002 May; 90(8): 889–896. https://doi.org/10.1161/01.res.0000016960.61087.86 PMID: 11988490

45. Hamaguchi S, Kawakami Y, Honda Y, et al. Developmental Changes in Excitation–Contraction Mecha- nisms of the Mouse Ventricular Myocardium as Revealed by Functional and Confocal Imaging Analy- ses. J Pharmacol Sci. 2013; 123(2): 167–175. https://doi.org/10.1254/jphs.13099fp PMID: 24096881

46. Couch J, West T, Hoff H. Development of the Action Potential of the Prenatal Rat Heart. Circ Res. 1969 Jan; 24(1): 19–31. https://doi.org/10.1161/01.res.24.1.19 PMID: 5763736

47. Edwards A, Louch W. Species-Dependent Mechanisms of Cardiac Arrhythmia: A Cellular Focus. Clin Med Insights Cardiol. 2017 Feb; 11. https://doi.org/10.1177/1179546816686061

48. Huynh T, Chen F, Wetzel G, et al. Developmental Changes in Membrane Ca2+ and K+ Currents in Fetal, Neonatal, and Adult Rabbit Ventricular Myocytes. Circ Res. 1992 Mar; 70(3): 508–515. https:// doi.org/10.1161/01.res.70.3.508 PMID: 1537088

49. Stinstra J, Golbach E, Leeuwen P, et al. Multicentre Study of Fetal Cardiac Time Intervals Using Magne- tocardiography. BJOG. 2002 Nov; 109(11): 1235–1243. https://doi.org/10.1046/j.1471-0528.2002. 01057.x PMID: 12452461

50. Sato N, Hoshiai T, Ito T, et al. Successful Detection of the Fetal Electrocardiogram Waveform Changes During Various States of Singletons. Tohoku J Exp Med. 2011 Oct; 225(2): 89–94. https://doi.org/10. 1620/tjem.225.89 PMID: 21908954

51. Abboud S, Barkai G, Mashiach S, et al. Quantification of the Fetal Electrocardiogram Using Averaging Technique. Comput Biol Med. 1990; 20(3): 147–155. https://doi.org/10.1016/0010-4825(90)90001-6 PMID: 2208985

52. Wilders R, Verkerk A. Long QT Syndrome and Sinus Bradycardia–A Mini Review. Front Cardiovasc Med. 2018 Aug; 5(106). https://doi.org/10.3389/fcvm.2018.00106 PMID: 30123799

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る