リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「The role of fines on internal instability and its impact on undrained mechanical response of gap-graded soils」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

The role of fines on internal instability and its impact on undrained mechanical response of gap-graded soils

Prasomsri Jitrakon 高橋 章浩 Jitrakon Prasomsri Akihiro Takahashi 東京工業大学 DOI:https://doi.org/10.1016/j.sandf.2020.09.008

2020.12

概要

This study presents an experimental investigation of the contribution of non-plastic fines to the development of seepage-induced inter- nal instability and its impact on the undrained mechanical response of gap-graded sands. The purpose of the laboratory tests is to observe the internal instability of two key microstructures: (1) an underfilled microstructure in which the coarser particles control the stress transfer and (2) an overfilled microstructure in which the finer particles play a primary role in the stress transfer. Tests on medium dense sands with seven different fines contents are conducted using a pressure-controlled triaxial erosion device. The device enables inter- nal erosion tests with high back pressure under a pressure-controlled condition. The results indicate that the initial fines content signif- icantly affects the initiation and progress of internal instability. The phenomena of self-filtering and suffusion, evident for underfilled soil, can occur at relatively small hydraulic gradients. Depending on the initial fines content, overfilled soil is vulnerable to suffosion, seepage- induced failure, or an internally stable state, which can occur at large hydraulic gradients. Undrained compression tests on eroded soils reveal that suffusion makes the soil looser and more contractive, while suffosion makes the soil more dilative at large strain levels. As suffusion may create an unstable structure in the soils, sudden drops in deviator stress and sharp increases in pore water pressure and radial strain with axial straining are detected in all the post-suffusion soils at small strain levels. Finally, the identificaton of internal instability is illustrated in terms of the void ratio and the fines content, for assessing the initiation and progress of instability phenomena, as well as the possible soil microstructures.

この論文で使われている画像

参考文献

Altuhafi, F., O’Sullivan, C., Cavarretta, I., 2013. Analysis of an image- based method to quantify the size and shape of sand particles. J. Geotech. Geoenviron. Eng. 139 (8), 1290–1307.

ASTM D2487-11, 2012. Standard practice for classification of soils for engineering purposes (Unified Soil Classification System). Annual Book of ASTM Standards. ASTM International, West Con- shohocken, PA.

ASTM E2655-08, 2008. Standard guide for reporting uncertainty of test results and use of the term measurement uncertainty in ASTM test methods. Annual Book of ASTM Standards. ASTM International, West Conshohocken, PA.

Bendahmane, F., Marot, D., Alexis, A., 2008. Experimental parametric study of suffusion and backward erosion. J. Geotech. Geoenviron. Eng. 134 (1), 57–67.

Bonelli, S., 2012. Erosion of Geomaterials. John Wiley & Sons.

Chang, D.S., Zhang, L.M., 2011. A stress-controlled erosion apparatus for studying internal erosion in soils. Geotech. Test. J. 34 (6), 579–589.

Chang, D.S., Zhang, L.M., 2012. Critical hydraulic gradients of internal erosion under complex stress states. J. Geotech. Geoenviron. Eng. 139 (9), 1454–1467.

Fannin, R.J., Slangen, P., 2014. On the distinct phenomena of suffusion and suffosion. Ge´otechnique Lett. 4 (4), 289–294.

Fell, R., Wan, C.F., Cyganiewicz, J., Foster, M., 2003. Time for development of internal erosion and piping in embankment dams. J. Geotech. Geoenviron. Eng. 129 (4), 307–314.

International Commission on Large Dams (ICOLD), 2013. Bulletin on internal erosion of dams, dikes and their foundations.

Jiang, M.J., Konrad, J.M., Leroueil, S., 2003. An efficient technique for generating homogeneous samples for DEM studies. Comput. Geotech. 30 (7), 579–597.

Ke, L., Takahashi, A., 2012. Strength reduction of cohesionless soil due to internal erosion induced by one-dimensional upward seepage flow. Soils Found. 52 (4), 698–711.

Ke, L., Takahashi, A., 2014a. Triaxial erosion test for evaluation of mechanical consequences of internal erosion. Geotech. Test. J. 37 (2), 347–364.

Ke, L., Takahashi, A., 2014b. Experimental investigations on suffusion characteristics and its mechanical consequences on saturated cohe- sionless soil. Soils Found. 54 (4), 713–730.

Ke, L., Takahashi, A., 2015. Drained monotonic responses of suffusional cohesionless soils. J. Geotech. Geoenviron. Eng. 141 (8), 04015033.

Kenney, T.C., Lau, D., 1985. Internal stability of granular filters. Can. Geotech. J. 23 (3), 420–423.

Kenney, T.C., Lau, D., 1986. Internal stability of granular filters: Reply. Can. Geotech. J. 23 (3), 420–423.

Ke´zdi, A., 1979. Soil Physics: Selected Topics. Elsevier Scientific Publish- ing Co., Amsterdam.

Ladd, R.S., 1978. Preparing test specimens using undercompaction. Geotech. Test. J. 1 (1), 16–23.

Lade, P.V., Liggio, C.D., Yamamuro, J.A., 1998. Effects of non-plastic fines on minimum and maximum void ratios of sand. Geotech. Test. J. 21, 336–347.

Li, M., Fannin, R.J., 2008. Comparison of two criteria for internal stability of granular soil. Can. Geotech. J. 45 (9), 1303–1309.

Marot, D., Bendahmane, F., Rosquoet, F., Alexis, A., 2009. Internal flow effects on isotropic confined sand-clay mixtures. Soil Sediment Contam. 18 (3), 294–306.

Mehdizadeh, A., Disfani, M.M., Evans, R., Arulrajah, A., 2017. Progressive internal erosion in a gap-graded internally unstable soil: mechanical and geometrical effects. Int. J. Geomech. 18 (3), 04017160. Mitchell, J.K., 1993. Fundamentals of Soil Behavior. John Wiley & Sons, New York, pp. 1–210.

Moffat, R., Fannin, R.J., 2011. A hydromechanical relation governing internal stability of cohesionless soil. Can. Geotech. J. 48 (3), 413–424.

Moffat, R., Fannin, R.J., Garner, S.J., 2011. Spatial and temporal progression of internal erosion in cohesionless soil. Can. Geotech. J. 48 (3), 399–412.

Muir Wood, D., 2007. The magic of sands—the 20th Bjerrum Lecture presented in Oslo, 25 November 2005. Can. Geotech. J. 44 (11), 1329–1350.

Nguyen, C.D., Benahmed, N., Ando`, E., Sibille, L., Philippe, P., 2019. Experimental investigation of microstructural changes in soils eroded by suffusion using X-ray tomography. Acta Geotech. 14 (3), 749–765.

Nguyen, T.T., Indraratna, B., 2017. Experimental and numerical inves- tigations into hydraulic behaviour of coir fibre drain. Can. Geotech. J. 54 (1), 75–87.

Nguyen, T.T., Indraratna, B., 2020. A coupled CFD–DEM approach to examine the hydraulic critical state of soil under increasing hydraulic gradient. Int. J. Geomech. 20 (9), 04020138.

Ouyang, M., Takahashi, A., 2015. Influence of initial fines content on fabric of soils subjected to internal erosion. Can. Geotech. J. 53, 299– 313.

Pachideh, V., Hosseini, S.M.M.M., 2019. A new physical model for studying flow direction and other influencing parameters on the internal erosion of soils. Geotech. Test. J. 42 (6), 1431–1456.

Peng, M., Zhang, L.M., 2012. Breaching parameters of landslide dams. Landslides 9 (1), 13–31.

Powers, M.C., 1953. A new roundness scale for sedimentary particles. J. Sediment. Res. 23 (2), 117–119.

Razavi, S.K., Hajialilue Bonab, M., Dabaghian, A., 2020. Investigation into the internal erosion and local settlement of Esfarayen earth-fill dam. J. Geotech. Geoenviron. Eng. 146 (4), 04020006.

Reddi, L.N., Lee, I.M., Bonala, M.V.S., 2000. Comparison of internal and surface erosion using flow pump tests on a sand-kaolinite mixture. Geotech. Test. J. 23 (1), 116–122.

Rochim, A., Marot, D., Sibille, L., Thao Le, V., 2017. Effects of hydraulic loading history on suffusion susceptibility of cohesionless soils. J. Geotech. Geoenviron. Eng. 143 (7), 04017025.

Shire, T., O’Sullivan, C., Hanley, K.J., 2016. The influence of fines content and size-ratio on the micro-scale properties of dense bimodal mate- rials. Granul. Matter. 18 (3), 52.

Shire, T., O’Sullivan, C., Hanley, K.J., Fannin, R.J., 2014. Fabric and effective stress distribution in internally unstable soils. J. Geotech. Geoenviron. Eng. 140 (12), 04014072.

Sibille, L., Marot, D., Sail, Y., 2015. A description of internal erosion by suffusion and induced settlements on cohesionless granular matter. Acta Geotech. 10 (6), 735–748.

Skempton, A.W., Brogan, J.M., 1994. Experiments on piping in sandy gravels. Ge´otechnique 45 (3), 565–567.

Slangen, P., Fannin, R.J., 2017. A flexible wall permeameter for investigating suffusion and suffosion. Geotech. Test. J. 40 (1), 1–14.

Stewart, R.A., Watts, B.D., 2000. The WAC Bennett dam sinkhole incident. In: Proceedings 53rd Canadian Geotechnical Conference, Montreal, Canada.

Thevanayagam, S., Mohan, S., 2000. Intergranular state variables and stress–strain behaviour of silty sands. Ge´otechnique 50 (1), 1–23.

Thevanayagam, S., Shenthan, T., Mohan, S., Liang, J., 2002. Undrained fragility of clean sands, silty sands, and sandy silts. J. Geotech. Geoenviron. Eng. 128 (10), 849–859.

Xiao, M., Shwiyhat, N., 2012. Experimental investigation of the effects of suffusion on physical and geomechanic characteristics of sandy soils. Geotech. Test. J. 35 (6), 890–900.

Yamamuro, J.A., Lade, P.V., 1997. Static liquefaction of very loose sands. Can. Geotech. J. 34 (6), 905–917.

Yamamuro, J.A., Covert, K.M., 2001. Monotonic and cyclic liquefaction of very loose sands with high silt content. J. Geotech. Geoenviron. Eng. 127 (4), 314–324.

Yasuda, S., Shimizu, Y., Deguchi, K., 2016. Investigation of the mechanism of the 2015 failure of a dike on Kinu River. Soils Found. 56 (4), 581–592.

Zou, Y., Chen, C., Zhang, L., 2020. Simulating progression of internal erosion in gap-graded sandy gravels using coupled CFD-DEM. Int. J. Geomech. 20 (1), 04019135.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る