リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Adiabatic evolution of the self-interacting axion field around rotating black holes」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Adiabatic evolution of the self-interacting axion field around rotating black holes

Omiya, Hidetoshi Takahashi, Takuya Tanaka, Takahiro 京都大学 DOI:10.1093/ptep/ptac058

2022.04

概要

Ultra-light axion fields, motivated by string theory, form a large condensate (axion cloud) around rotating black holes through superradiant instability. Several effects due to the axion cloud, such as the spin-down of black holes and the emission of monochromatic gravitational waves, open a new window to search for axions by astrophysical observations. When the axion self-interaction is considered, the evolution of clouds is altered significantly, and an explosive phenomenon called a bosenova can happen. Thus, it is necessary to understand the precise evolution of self-interacting clouds for the detection of axions by astrophysical observations. In this paper, we propose a new method to track the whole process of the growth of self-interacting axion clouds employing the adiabatic approximation. We emphasize that our method relies neither on the non-relativistic approximation nor on perturbative treatment of the self-interaction, which is often used in the literature. Our main finding is that the evolution of clouds in the strongly self-interacting regime depends on the strength of the gravitational coupling between the axion and the black hole. For a large coupling, the cloud evolves into a quasi-stationary state where the superradiant energy gain is balanced with the energy dissipation to infinity by the self-interaction. On the other hand, when one decreases the size of the coupling, clouds become unstable at some energy, which would be interpreted as the onset of a bosenova.

この論文で使われている画像

参考文献

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

R. D. Peccei and H. R. Quinn, Phys. Rev. Lett. 38, 1440 (1977) [,328(1977)].

S. Weinberg, Phys. Rev. Lett. 40, 223 (1978).

F. Wilczek, Phys. Rev. Lett. 40, 279 (1978).

J. E. Kim, Phys. Rev. Lett. 43, 103 (1979).

M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Nucl. Phys. B 166, 493 (1980).

A. R. Zhitnitsky, Sov. J. Nucl. Phys. 31, 260 (1980).

M. Dine, W. Fischler, and M. Srednicki, Phys. Lett. B 104, 199 (1981).

M. Dine and W. Fischler, Phys. Lett. B 120, 137 (1983).

J. Preskill, M. B. Wise, and F. Wilczek, Phys. Lett. B 120, 127 (1983).

L. F. Abbott and P. Sikivie, Phys. Lett. B 120, 133 (1983).

L. Hui, J. P. Ostriker, S. Tremaine, and E. Witten, Phys. Rev. D 95, 043541 (2017) [arXiv:1610.08297

[astro-ph.CO]] [Search INSPIRE].

P. Svrcek and E. Witten, J. High Energy Phys. 0606, 051 (2006) [arXiv:hep-th/0605206] [Search IN

SPIRE].

A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper, and J. March-Russell, Phys. Rev. D 81,

123530 (2010) [arXiv:0905.4720 [hep-th]] [Search INSPIRE].

R. Brito, V. Cardoso, and P. Pani, Lect. Notes Phys. 906, 1 (2015) [arXiv:1501.06570 [gr-qc]] [Sear

ch INSPIRE].

T. J. M. Zouros and D. M. Eardley, Ann. Phys. 118, 139 (1979).

S. L. Detweiler, Phys. Rev. D 22, 2323 (1980).

S. R. Dolan, Phys. Rev. D 76, 084001 (2007) [arXiv:0705.2880 [gr-qc]] [Search INSPIRE].

A. Arvanitaki and S. Dubovsky, Phys. Rev. D 83, 044026 (2011) [arXiv:1004.3558 [hep-th]] [Sear

ch INSPIRE].

R. Brito, V. Cardoso, and P. Pani, Classical Quantum Gravity 32, 134001 (2015) [arXiv:1411.0686

[gr-qc]] [Search INSPIRE].

M. J. Stott and D. J. E. Marsh, Phys. Rev. D 98, 083006 (2018) [arXiv:1805.02016 [hep-ph]] [Sear

ch INSPIRE].

N. Fernandez, A. Ghalsasi, and S. Profumo, arXiv:1911.07862 [hep-ph] [Search INSPIRE].

K. K. Y. Ng,1O. A., S. Vitale, and T. G. F. Li, Phys. Rev. D 103, 063010 (2021) [arXiv:1908.02312

[gr-qc]] [Search INSPIRE].

21/22

Downloaded from https://academic.oup.com/ptep/article/2022/4/043E03/6556028 by Library,Faculty of Agriculture/Graduate School of Agriculture,Kyoto University user on 04 January 2023

Fig. B4. Dependence of the total flux Ftot (A0 ) on the energy E. The red solid and blue dashed lines

correspond to the respective lines in the right panel of Fig. B1. The newly added black line corresponds to

the total flux calculated by solving the linearized equation from the configuration neglecting the higher-l,

m modes.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

PTEP 2022, 043E03

H. Omiya et al.

22/22

Downloaded from https://academic.oup.com/ptep/article/2022/4/043E03/6556028 by Library,Faculty of Agriculture/Graduate School of Agriculture,Kyoto University user on 04 January 2023

[23] K. K. Y. Ng, S. Vitale, O. A. Hannuksela, and T. G. F. Li, arXiv:2011.06010 [gr-qc] [Search INSP

IRE].

[24] H. Yoshino and H. Kodama, Prog. Theor. Exp. Phys. 2014, 043E02 (2014) [arXiv:1312.2326 [gr-qc]]

[Search INSPIRE].

[25] A. Arvanitaki, M. Baryakhtar, and X. Huang, Phys. Rev. D 91, 084011 (2015) [arXiv:1411.2263

[hep-ph]] [Search INSPIRE].

[26] S. J. Zhu, M. Baryakhtar, M. A. Papa, D. Tsuna, N. Kawanaka, and H.-B. Eggenstein, Phys. Rev.

D 102, 063020 (2020) [arXiv:2003.03359 [gr-qc]] [Search INSPIRE].

[27] L. Tsukada, T. Callister, A. Matas, and P. Meyers, Phys. Rev. D 99, 103015 (2019)

[arXiv:1812.09622 [astro-ph.HE]] [Search INSPIRE].

[28] R. Abbott et al., arXiv:2111.15507 [astro-ph.HE] [Search INSPIRE].

[29] D. Baumann, H. S. Chia, and R. A. Porto, Phys. Rev. D 99, 044001 (2019) [arXiv:1804.03208 [grqc]] [Search INSPIRE].

[30] Q. Ding, X. Tong, and Y. Wang, Astrophys. J. 908, 78 (2021) [arXiv:2009.11106 [astro-ph.HE]]

[Search INSPIRE].

[31] S. Choudhary, N. Sanchis-Gual, A. Gupta, J. C. Degollado, S. Bose, and J. A. Font, Phys. Rev. D

103, 044032 (2021) [arXiv:2010.00935 [gr-qc]][Search INSPIRE].

[32] B. Su, Z.-Z. Xianyu, and X. Zhang, arXiv:2107.13527 [gr-qc] [Search INSPIRE].

[33] T. Takahashi, H. Omiya, and T. Tanaka, arXiv:2112.05774 [gr-qc] [Search INSPIRE].

[34] D. Baumann, G. Bertone, J. Stout, and G. M. Tomaselli, arXiv:2112.14777 [gr-qc] [Search INSP

IRE].

[35] H. Yoshino and H. Kodama, Prog. Theor. Phys. 128, 153 (2012) [arXiv:1203.5070 [gr-qc]] [Search

INSPIRE].

[36] H. Yoshino and H. Kodama, Classical Quantum Gravity 32, 214001 (2015) [arXiv:1505.00714 [grqc]] [Search INSPIRE].

[37] M. Baryakhtar, M. Galanis, R. Lasenby, and O. Simon, Phys. Rev. D 103 9 095019 2021 [hep-ph]

[Search INSPIRE]. arXiv:2011.11646

[38] H. Omiya, T. Takahashi, and T. Tanaka, Prog. Theor. Exp. Phys. 2021, 043E02 (2021)

[arXiv:2012.03473 [gr-qc]] [Search INSPIRE].

[39] S. Weinberg, The Quantum Theory of Fields, Vol. 2: Modern Applications (Cambridge University

Press, Cambridge, UK, 2013).

[40] D. R. Brill, P. L. Chrzanowski, C. M. Pereira, E. D. Fackerell, and J. R. Ipser, Phys. Rev. D 5, 1913

(1972).

[41] S. A. Teukolsky and W. H. Press, Astrophys. J. 193, 443 (1974).

[42] S. L. Shapiro and S. A. Teukolsky, Black Holes, White Dwarfs, and Neutron Stars: The Physics of

Compact Objects (Wiley, New York, 1983).

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る