リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Evolution of self-interacting axion around rotating black holes」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Evolution of self-interacting axion around rotating black holes

Omiya, Hidetoshi 京都大学 DOI:10.14989/doctor.k24404

2023.03.23

概要

Axions are well-motivated particles beyond the Standard Model in a variety of contexts.
They were originally proposed as a solution to the strong CP problem [1, 2, 3, 4, 5, 6, 7],
and then noticed to be a good candidate for dark matter [8, 9, 10, 11, 12]. In addition,
string theory naturally predicts plentitude of axions in its low energy sector [13, 14, 15, 16],
which is called axiverse scenario [15]. In the axiverse scenario, axions can have Compton
wavelengths in various scales, up to cosmological scales. In this thesis, we focus on the
axions in the string theory (string axion) with the Compton wavelength in the range
of astrophysical scales. In such cases, axions are expected to cause various interesting
astrophysical phenomena, which are detectable by gravitational wave observations [15, 17].
We consider an axion field around a rotating black hole. Similar to the famous Penrose
process [18, 19], a bosonic field can extract the energy and the angular momentum from
the rotating black hole. This energy extraction mechanism is called superradiance [20,
21, 22, 23, 24, 25]. Note that the axion is bounded by the gravitational potential of
the black hole, owing to its mass. Therefore, the axion which extracted energy from
the black hole does not dissipate to infinity. Therefore, the bounded axion accumulates
around the black hole, which implies instability. This instability is called superradiant
instability [26, 27, 28, 29, 30, 25], and its time scale can be much shorter than the age
of the Universe when the Compton wavelength of the axion is comparable to the size
of the black hole. Due to the superradiant instability, the axion would spontaneously
form a macroscopic condensate around the rotating black hole. In this thesis, we call the
macroscopic condensate of the axion an axion condensate. For the special case when the
axion condensate is composed of the single unstable mode, we refer it as an axion cloud.
The presence of the axion condensate allows us to detect the axion through gravitational wave observations. Since the axion condensate grows by extracting the rotational
energy of the black hole, the existence of the axion implies the spin-down of the black
hole [17, 31]. The spin-down by the axion might be observed through the distribution of
the black hole spin. In addition, the axion condensate has the quadrupole moment and
thus radiates continuous gravitational waves. Observation of the characteristic gravitational waves can also verify the axion [32, 33, 34, 35, 36].
Several effects can have an impact on the evolution of the axion condensate. These
effects include the axion self-interaction [17, 37, 38, 39, 40, 41, 42], the tidal interaction
in binary systems [43, 44, 45, 46, 47, 48, 49], and interactions with other fields [50, 51].
The axion self-interaction is particularly interesting among these effects. For example, if
the self-interaction is attractive, the condensate is thought to collapse when it becomes
dense [37, 39]. ...

参考文献

[1] R.D. Peccei and H.R. Quinn, CP Conservation in the Presence of Instantons, Phys.

Rev. Lett. 38 (1977) 1440.

[2] S. Weinberg, A New Light Boson?, Phys. Rev. Lett. 40 (1978) 223.

[3] F. Wilczek, Problem of Strong P and T Invariance in the Presence of Instantons,

Phys. Rev. Lett. 40 (1978) 279.

[4] J.E. Kim, Weak Interaction Singlet and Strong CP Invariance, Phys. Rev. Lett. 43

(1979) 103.

[5] M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Can Confinement Ensure

Natural CP Invariance of Strong Interactions?, Nucl. Phys. B 166 (1980) 493.

[6] A.R. Zhitnitsky, On Possible Suppression of the Axion Hadron Interactions. (In

Russian), Sov. J. Nucl. Phys. 31 (1980) 260.

[7] M. Dine, W. Fischler and M. Srednicki, A Simple Solution to the Strong CP

Problem with a Harmless Axion, Phys. Lett. B 104 (1981) 199.

[8] M. Dine and W. Fischler, The Not So Harmless Axion, Phys. Lett. 120B (1983)

137.

[9] J. Preskill, M.B. Wise and F. Wilczek, Cosmology of the Invisible Axion, Phys.

Lett. 120B (1983) 127.

[10] L.F. Abbott and P. Sikivie, A Cosmological Bound on the Invisible Axion, Phys.

Lett. 120B (1983) 133.

[11] L. Hui, J.P. Ostriker, S. Tremaine and E. Witten, Ultralight scalars as cosmological

dark matter, Phys. Rev. D 95 (2017) 043541 [1610.08297].

[12] C.B. Adams et al., Axion Dark Matter, in 2022 Snowmass Summer Study, 3, 2022

[2203.14923].

[13] M.B. Green, J.H. Schwarz and E. Witten, Superstring Theory Vol. 2, Cambridge

Monographs on Mathematical Physics, Cambridge University Press (2012),

10.1017/CBO9781139248570.

[14] P. Svrcek and E. Witten, Axions In String Theory, JHEP 06 (2006) 051

[hep-th/0605206].

[15] A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper and J. March-Russell,

String Axiverse, Phys. Rev. D81 (2010) 123530 [0905.4720].

103

[16] M. Cicoli, M. Goodsell and A. Ringwald, The type IIB string axiverse and its

low-energy phenomenology, JHEP 10 (2012) 146 [1206.0819].

[17] A. Arvanitaki and S. Dubovsky, Exploring the String Axiverse with Precision Black

Hole Physics, Phys. Rev. D83 (2011) 044026 [1004.3558].

[18] R. Penrose, Gravitational Collapse: the Role of General Relativity, Nuovo Cimento

Rivista Serie 1 (1969) 252.

[19] R. Penrose and R.M. Floyd, Extraction of rotational energy from a black hole,

Nature 229 (1971) 177.

[20] W.H. Press and S.A. Teukolsky, Floating Orbits, Superradiant Scattering and the

Black-hole Bomb, Nature 238 (1972) 211.

[21] J.D. Bekenstein, Extraction of energy and charge from a black hole, Phys. Rev. D 7

(1973) 949.

[22] S.A. Teukolsky and W.H. Press, Perturbations of a rotating black hole. III.

Interaction of the hole with gravitational and electromagnetic radiation., Astrophys.

J. 193 (1974) 443.

[23] J.D. Bekenstein and M. Schiffer, The Many faces of superradiance, Phys. Rev. D58

(1998) 064014 [gr-qc/9803033].

[24] W.E. East, F.M. Ramazano˘glu and F. Pretorius, Black Hole Superradiance in

Dynamical Spacetime, Phys. Rev. D 89 (2014) 061503 [1312.4529].

[25] R. Brito, V. Cardoso and P. Pani, Superradiance: New Frontiers in Black Hole

Physics, Lect. Notes Phys. 906 (2015) pp.1 [1501.06570].

[26] T. Damour, N. Deruelle and R. Ruffini, On Quantum Resonances in Stationary

Geometries, Lett. Nuovo Cim. 15 (1976) 257.

[27] T.J.M. Zouros and D.M. Eardley, INSTABILITIES OF MASSIVE SCALAR

PERTURBATIONS OF A ROTATING BLACK HOLE, Annals Phys. 118 (1979)

139.

[28] S.L. Detweiler, KLEIN-GORDON EQUATION AND ROTATING BLACK

HOLES, Phys. Rev. D22 (1980) 2323.

[29] V. Cardoso and S. Yoshida, Superradiant instabilities of rotating black branes and

strings, JHEP 07 (2005) 009 [hep-th/0502206].

[30] S.R. Dolan, Instability of the massive Klein-Gordon field on the Kerr spacetime,

Phys. Rev. D76 (2007) 084001 [0705.2880].

[31] R. Brito, V. Cardoso and P. Pani, Black holes as particle detectors: evolution of

superradiant instabilities, Class. Quant. Grav. 32 (2015) 134001 [1411.0686].

[32] A. Arvanitaki, M. Baryakhtar and X. Huang, Discovering the QCD Axion with

Black Holes and Gravitational Waves, Phys. Rev. D91 (2015) 084011 [1411.2263].

104

[33] A. Arvanitaki, M. Baryakhtar, S. Dimopoulos, S. Dubovsky and R. Lasenby, Black

Hole Mergers and the QCD Axion at Advanced LIGO, Phys. Rev. D 95 (2017)

043001 [1604.03958].

[34] LIGO Scientific, VIRGO, KAGRA collaboration, All-sky search for

gravitational wave emission from scalar boson clouds around spinning black holes in

LIGO O3 data, 2111.15507.

[35] A.K. Saha, P. Parashari, T.N. Maity, A. Dubey, S. Bouri and R. Laha, Bounds on

ultralight bosons from the Event Horizon Telescope observation of Sgr A∗ ,

2208.03530.

[36] N. Siemonsen, T. May and W.E. East, SuperRad: A black hole superradiance

gravitational waveform model, 2211.03845.

[37] H. Yoshino and H. Kodama, Bosenova collapse of axion cloud around a rotating

black hole, Prog. Theor. Phys. 128 (2012) 153 [1203.5070].

[38] G. Mocanu and D. Grumiller, Self-organized criticality in boson clouds around black

holes, Phys. Rev. D 85 (2012) 105022 [1203.4681].

[39] H. Yoshino and H. Kodama, The bosenova and axiverse, Class. Quant. Grav. 32

(2015) 214001 [1505.00714].

[40] A. Gruzinov, Black Hole Spindown by Light Bosons, 1604.06422.

[41] H. Fukuda and K. Nakayama, Aspects of Nonlinear Effect on Black Hole

Superradiance, JHEP 01 (2020) 128 [1910.06308].

[42] M. Baryakhtar, M. Galanis, R. Lasenby and O. Simon, Black hole superradiance of

self-interacting scalar fields, Phys. Rev. D 103 (2021) 095019 [2011.11646].

[43] D. Baumann, H.S. Chia and R.A. Porto, Probing Ultralight Bosons with Binary

Black Holes, Phys. Rev. D 99 (2019) 044001 [1804.03208].

[44] D. Baumann, H.S. Chia, R.A. Porto and J. Stout, Gravitational Collider Physics,

Phys. Rev. D 101 (2020) 083019 [1912.04932].

[45] T. Takahashi and T. Tanaka, Axion clouds may survive the perturbative tidal

interaction over the early inspiral phase of black hole binaries, 2106.08836.

[46] T. Takahashi, H. Omiya and T. Tanaka, Axion cloud evaporation during inspiral of

black hole binaries – the effects of backreaction and radiation, 2112.05774.

[47] D. Baumann, G. Bertone, J. Stout and G.M. Tomaselli, Ionization of Gravitational

Atoms, 2112.14777.

[48] X. Tong, Y. Wang and H.-Y. Zhu, Termination of superradiance from a binary

companion, Phys. Rev. D 106 (2022) 043002 [2205.10527].

[49] W.E. East, Vortex String Formation in Black Hole Superradiance of a Dark Photon

with the Higgs Mechanism, Phys. Rev. Lett. 129 (2022) 141103 [2205.03417].

105

[50] J.a.G. Rosa and T.W. Kephart, Stimulated Axion Decay in Superradiant Clouds

around Primordial Black Holes, Phys. Rev. Lett. 120 (2018) 231102 [1709.06581].

[51] T. Ikeda, R. Brito and V. Cardoso, Blasts of Light from Axions, Phys. Rev. Lett.

122 (2019) 081101 [1811.04950].

[52] H. Omiya, T. Takahashi and T. Tanaka, Renormalization group analysis of

superradiant growth of self-interacting axion cloud, PTEP 2021 (2021) 043E02

[2012.03473].

[53] H. Omiya, T. Takahashi, T. Tanaka and H. Yoshino, Impact of multiple modes on

the evolution of self-interacting axion condensate around rotating black holes,

2211.01949.

[54] H. Omiya, T. Takahashi and T. Tanaka, Adiabatic evolution of the self-interacting

axion field around rotating black holes, PTEP 2022 (2022) 043E03 [2201.04382].

[55] D. Brill, P. Chrzanowski, C. Martin Pereira, E. Fackerell and J. Ipser, Solution of

the scalar wave equation in a kerr background by separation of variables, Phys. Rev.

D 5 (1972) 1913.

[56] J.L. Roberts, N.R. Claussen, S.L. Cornish, E.A. Donley, E.A. Cornell and

C.E. Wieman, Controlled collapse of a bose-einstein condensate, Phys. Rev. Lett. 86

(2001) 4211.

[57] L.Y. Chen, N. Goldenfeld and Y. Oono, Renormalization Group Theory for Global

Asymptotic Analysis, Phys. Rev. Lett. 73 (1994) 1311 [cond-mat/9407024].

[58] L.-Y. Chen, N. Goldenfeld and Y. Oono, The Renormalization group and singular

perturbations: Multiple scales, boundary layers and reductive perturbation theory,

Phys. Rev. E54 (1996) 376 [hep-th/9506161].

[59] T. Kunihiro, A Geometrical Formulation of the Renormalization Group Method for

Global Analysis, Progress of Theoretical Physics 94 (1995) 503.

[60] S.-I. Ei, K. Fujii and T. Kunihiro, Renormalization group method for reduction of

evolution equations: Invariant manifolds and envelopes, Annals Phys. 280 (2000)

236 [hep-th/9905088].

[61] S.L. Shapiro and S.A. Teukolsky, Black holes, white dwarfs, and neutron stars : the

physics of compact objects, John Wiley & Sons, Ltd (1983).

[62] J.M. Bardeen, B. Carter and S.W. Hawking, The Four laws of black hole

mechanics, Commun. Math. Phys. 31 (1973) 161.

[63] K.S. Thorne, Disk accretion onto a black hole. 2. Evolution of the hole., Astrophys.

J. 191 (1974) 507.

[64] G. Ficarra, P. Pani and H. Witek, Impact of multiple modes on the black-hole

superradiant instability, Phys. Rev. D99 (2019) 104019 [1812.02758].

[65] R.P. Kerr, Gravitational field of a spinning mass as an example of algebraically

special metrics, Phys. Rev. Lett. 11 (1963) 237.

106

[66] E.W. Leaver, Solutions to a generalized spheroidal wave equation: Teukolsky’s

equations in general relativity, and the two‐ center problem in molecular quantum

mechanics, Journal of Mathematical Physics 27 (1986) 1238

[https://doi.org/10.1063/1.527130].

[67] J. Blandin, R. Pons and G. Marcilhacy, General solution of teukolsky’s equation,

Lettere al Nuovo Cimento (1971-1985) 38 (1983) 561.

[68] H. Suzuki, E. Takasugi and H. Umetsu, Perturbations of Kerr-de Sitter black hole

and Heun’s equations, Prog. Theor. Phys. 100 (1998) 491 [gr-qc/9805064].

[69] W. Gautschi, Computational aspects of three-term recurrence relations, SIAM

Review 9 (1967) 24 [https://doi.org/10.1137/1009002].

[70] W.H. Press, B.P. Flannery and S.A. Teukolsky, Numerical recipes. The art of

scientific computing (1986).

[71] E.W. Leaver, An Analytic representation for the quasi normal modes of Kerr black

holes, Proc. Roy. Soc. Lond. A 402 (1985) 285.

[72] J.M. Bardeen, W.H. Press and S.A. Teukolsky, Rotating black holes: Locally

nonrotating frames, energy extraction, and scalar synchrotron radiation, Astrophys.

J. 178 (1972) 347.

[73] H.-P. Nollert, Quasinormal modes of Schwarzschild black holes: The determination

of quasinormal frequencies with very large imaginary parts, Phys. Rev. D47 (1993)

5253.

[74] R. Fujita and H. Tagoshi, New numerical methods to evaluate homogeneous

solutions of the Teukolsky equation, Prog. Theor. Phys. 112 (2004) 415

[gr-qc/0410018].

[75] “NIST Digital Library of Mathematical Functions.” http://dlmf.nist.gov/, Release

1.1.7 of 2022-10-15.

[76] S. Mano, H. Suzuki and E. Takasugi, Analytic Solutions of the Teukolsky Equation

and Their Low Frequency Expansions, Progress of Theoretical Physics 95 (1996)

1079 [9603020].

[77] M. Sasaki and H. Tagoshi, Analytic black hole perturbation approach to

gravitational radiation, Living Rev. Rel. 6 (2003) 6 [gr-qc/0306120].

[78] H. Yoshino and H. Kodama, Gravitational radiation from an axion cloud around a

black hole: Superradiant phase, PTEP 2014 (2014) 043E02 [1312.2326].

107

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る