リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A novel phosphodiesterase 4 inhibitor, AA6216, reduces macrophage activity and fibrosis in the lung」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A novel phosphodiesterase 4 inhibitor, AA6216, reduces macrophage activity and fibrosis in the lung

松平 崇 近畿大学

2022.02.28

概要

Idiopathic pulmonary fibrosis (IPF) is an intractable disease with poor prognosis, and therapeutic options are limited. While the pathogenic mechanism is unknown, cytokines, such as transforming growth factor (TGF)-β, and immune cells, such as monocytes and macrophages, that produce them, seem to be involved in fibrosis. Some phosphodiesterase 4 (PDE4) inhibitors reportedly have anti-fibrotic potential by acting on these disease-related factors. Therefore, we evaluated the effect of a novel PDE4 inhibitor, AA6216, on nonclinical IPF-related models and samples from IPF patients. First, we examined the inhibitory effect of AA6216 on the production of TGF-β1 from a human monocytic cell line, THP-1. Second, we analyzed the impact of AA6216 on TNF-α production by human alveolar macrophages collected from patients with IPF. Finally, we investigated the anti-fibrotic potency of AA6216 on bleomycin-induced lung fibrosis in mice. We found that AA6216 significantly inhibited TGF-β1 production by THP-1 cells. It also significantly suppressed TNF-α production by alveolar macrophages from patients with IPF. In the mouse model of bleomycin-induced pulmonary fibrosis, therapeutic administration of AA6216 significantly reduced fibrosis scores, collagen-stained areas, and TGF-β1 in bronchoalveolar lavage fluid. AA6216 may represent a new agent for the treatment of IPF with a distinct mechanism of action from that of conventional anti-fibrotic agents.

参考文献

Acharya, P.S., Majumdar, S., Jacob, M., Hayden, J., Mrass, P., Weninger, W., Assoian, R. K., Pur´e, E., 2008. Fibroblast migration is mediated by CD44-dependent TGF beta activation. J. Cell Sci. 121, 1393–1402.

Ashcroft, T., Simpson, J.M., Timbrell, V., 1988. Simple method of estimating severity of pulmonary fibrosis on a numerical scale. J. Clin. Pathol. 41, 467–470.

Ayaub, E.A., Dubey, A., Imani, J., Botelho, F., Kolb, M.R.J., Richards, C.D., Ask, K., 2017. Overexpression of OSM and IL-6 impacts the polarization of pro-fibrotic macrophages and the development of bleomycin-induced lung fibrosis. Sci. Rep. 7, 13281.

Bourne, H.R., Lichtenstein, L.M., Melmon, K.L., Henney, C.S., Weinstein, Y., Shearer, G. M., 1974. Modulation of inflammation and immunity by cyclic AMP. Science 184, 19–28.

Braga, T.T., Agudelo, J.S., Camara, N.O., 2015. Macrophages during the fibrotic process: M2 as friend and foe. Front. Immunol. 6, 602.

Clark, R.A., McCoy, G.A., Folkvord, J.M., McPherson, J.M., 1997. TGF-beta 1 stimulates cultured human fibroblasts to proliferate and produce tissue-like fibroplasia: a fibronectin matrix-dependent event. J. Cell. Physiol. 170, 69–80.

Clarke, D.L., Carruthers, A.M., Mustelin, T., Murray, L.A., 2013. Matrix regulation of idiopathic pulmonary fibrosis: the role of enzymes. Fibrogenesis Tissue Repair 6, 20. Coentro, J.Q., Capella-Monsonís, H., Graceffa, V., Wu, Z., Mullen, A.M., Raghunath, M., Zeugolis, D.I., 2017. Collagen quantification in tissue specimens. Methods Mol. Biol. 1627, 341–350.

Conte, E., Gili, E., Fagone, E., Fruciano, M., Iemmolo, M., Vancheri, C., 2014. Effect of pirfenidone on proliferation, TGF-β-induced myofibroblast differentiation and fibrogenic activity of primary human lung fibroblasts. Eur. J. Pharmaceut. Sci. 58, 13–19.

Cortijo, J., Iranzo, A., Milara, X., Mata, M., Cerd´ a-Nicolas, ´ M., Ruiz-Saurí, A., Morcillo, E. J., 2009. Roflumilast, a phosphodiesterase 4 inhibitor, alleviates bleomycin-induced lung injury. Br. J. Pharmacol. 156, 534–544.

Deeks, E.D., 2015. Apremilast: a review in psoriasis and psoriatic arthritis. Drugs 75, 1393–1403.

Essayan, D.M., 1999. Cyclic nucleotide phosphodiesterase (PDE) inhibitors and immunomodulation. Biochem. Pharmacol. 57, 965–973.

Fine, A., Goldstein, R.H., 1987. The effect of transforming growth factor-beta on cell proliferation and collagen formation by lung fibroblasts. J. Biol. Chem. 262, 3897–3902.

Fingleton, B., 2017. Matrix metalloproteinases as regulators of inflammatory processes. Biochim. Biophys. Acta Mol. Cell Res. 1864, 2036–2042.

Garnock-Jones, K.P., 2015. Roflumilast: a review in COPD. Drugs 75, 1645–1656.

Gauldie, J., Graham, F., Xing, Z., Braciak, T., Foley, R., Sime, P.J., 1996. Adenovirusvector-mediated cytokine gene transfer to lung tissue. Ann. N. Y. Acad. Sci. 796, 235–244.

Goldberg, N.D., O’Toole, A.G., 1971. Analysis of cyclic 3’, 5’-adenosine monophosphate and cyclic 3’,5’-guanosine monophosphate. Methods Biochem. Anal. 20, 1–39.

Gomer, R.H., 2013. New approaches to modulating idiopathic pulmonary fibrosis. Curr. Allergy Asthma Rep. 13, 607–612.

Gordon, S., Plüddemann, A., 2017. Tissue macrophages: heterogeneity and functions. BMC Biol. 15, 53.

Hardman, J.G., Robison, G.A., Sutherland, E.W., 1971. Cyclic nucleotides. Annu. Rev. Physiol. 33, 311–336.

Henney, C.S., Bourne, H.R., Lichtenstein, L.M., 1972. The role of cyclic 3’, 5’ adenosine monophosphate in the specific cytolytic activity of lymphocytes. J. Immunol. 108, 1526–1534.

Henney, C.S., Lichtenstein, L.M., 1971. The role of cyclic AMP in the cytolytic activity of lymphocytes. J. Immunol. 107, 610–612.

Hertz, A.L., Bender, A.T., Smith, K.C., Gilchrist, M., Amieux, P.S., Aderem, A., Beavo, J. A., 2009. Elevated cyclic AMP and PDE4 inhibition induce chemokine expression in human monocyte-derived macrophages. Proc. Natl. Acad. Sci. U. S. A. 106, 21978–21983.

Hesse, M., Modolell, M., La Flamme, A.C., Schito, M., Fuentes, J.M., Cheever, A.W., Pearce, E.J., Wynn, T.A., 2001. Differential regulation of nitric oxide synthase-2 and arginase-1 by type 1/type 2 cytokines in vivo: granulomatous pathology is shaped by the pattern of L-arginine metabolism. J. Immunol. 167, 6533–6544.

Izbicki, G., Segel, M.J., Christensen, T.G., Conner, M.W., Breuer, R., 2002. Time course of bleomycin-induced lung fibrosis. Int. J. Exp. Pathol. 83, 111–119.

Jenkins, R.G., Moore, B.B., Chambers, R.C., Eickelberg, O., Konigshoff, ¨ M., Kolb, M., Laurent, G.J., Nanthakumar, C.B., Olman, M.A., Pardo, A., Selman, M., Sheppard, D., Sime, P.J., Tager, A.M., Tatler, A.L., Thannickal, V.J., White, E.S., 2017. An official American thoracic society workshop report: use of animal models for the preclinical assessment of potential therapies for pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 56, 667–679.

Janjua, S., Fortescue, R., Poole, P., 2020. Phosphodiesterase-4 inhibitors for chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 5, CD002309.

Johnston, C.J., Piedboeuf, B., Rubin, P., Williams, J.P., Baggs, R., Finkelstein, J.N., 1996. Early and persistent alterations in the expression of interleukin-1 alpha, interleukin1 beta and tumor necrosis factor alpha mRNA levels in fibrosis-resistant and sensitive mice after thoracic irradiation. Radiat. Res. 145, 762–767.

Kapanci, Y., Desmouliere, A., Pache, J.C., Redard, M., Gabbiani, G., 1995. Cytoskeletal protein modulation in pulmonary alveolar myofibroblasts during idiopathic pulmonary fibrosis. Possible role of transforming growth factor beta and tumor necrosis factor alpha. Am. J. Respir. Crit. Care Med. 152, 2163–2169.

King Jr., T.E., Bradford, W.Z., Castro-Bernardini, S., Fagan, E.A., Glaspole, I., Glassberg, M.K., Gorina, E., Hopkins, P.M., Kardatzke, D., Lancaster, L., Lederer, D. J., Nathan, S.D., Pereira, C.A., Sahn, S.A., Sussman, R., Swigris, J.J., Noble, P.W., 2014. A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N. Engl. J. Med. 370, 2083–2092.

Kolb, M., Bonniaud, P., Galt, T., Sime, P.J., Kelly, M.M., Margetts, P.J., Gauldie, J., 2002. Differences in the fibrogenic response after transfer of active transforming growth factor-beta1 gene to lungs of “fibrosis-prone” and “fibrosis-resistant” mouse strains. Am. J. Respir. Cell Mol. Biol. 27, 141–150.

Lupher Jr., M.L., Gallatin, W.M., 2006. Regulation of fibrosis by the immune system. Adv. Immunol. 89, 245–288.

Maier, C., Ramming, A., Bergmann, C., Weinkam, R., Kittan, N., Schett, G., Distler, J.H. W., Beyer, C., 2017. Inhibition of phosphodiesterase 4 (PDE4) reduces dermal

fibrosis by interfering with the release of interleukin-6 from M2 macrophages. Ann. Rheum. Dis. 76, 1133–1141.

Misharin, A.V., Morales-Nebreda, L., Reyfman, P.A., Cuda, C.M., Walter, J.M., McQuattie-Pimentel, A.C., Chen, C.I., Anekalla, K.R., Joshi, N., Williams, K.J.N., Abdala-Valencia, H., Yacoub, T.J., Chi, M., Chiu, S., Gonzalez-Gonzalez, F.J., Gates, K., Lam, A.P., Nicholson, T.T., Homan, P.J., Soberanes, S., Dominguez, S.,

Morgan, V.K., Saber, R., Shaffer, A., Hinchcliff, M., Marshall, S.A., Bharat, A., Berdnikovs, S., Bhorade, S.M., Bartom, E.T., Morimoto, R.I., sacrificedch, W.E., Sznajder, J.I., Chandel, N.S., Mutlu, G.M., Jain, M., Gottardi, C.J., Singer, B.D., Ridge, K.M., Bagheri, N., Shilatifard, A., Budinger, G.R.S., Perlman, H., 2017.

Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span. J. Exp. Med. 214, 2387–2404.

Moeller, A., Ask, K., Warburton, D., Gauldie, J., Kolb, M., 2008. The bleomycin animal model: a useful tool to investigate treatment options for idiopathic pulmonary fibrosis? Int. J. Biochem. Cell Biol. 40, 362–382.

Murray, L.A., Argentieri, R.L., Farrell, F.X., Bracht, M., Sheng, H., Whitaker, B., Beck, H., Tsui, P., Cochlin, K., Evanoff, H.L., Hogaboam, C.M., Das, A.M., 2008. Hyperresponsiveness of IPF/UIP fibroblasts: interplay between TGFbeta1, IL-13 and CCL2. Int. J. Biochem. Cell Biol. 40, 2174–2182.

Murray, P.J., Allen, J.E., Biswas, S.K., Fisher, E.A., Gilroy, D.W., Goerdt, S., Gordon, S., Hamilton, J.A., Ivashkiv, L.B., Lawrence, T., Locati, M., Mantovani, A., Martinez, F. O., Mege, J.L., Mosser, D.M., Natoli, G., Saeij, J.P., Schultze, J.L., Shirey, K.A., Sica, A., Suttles, J., Udalova, I., van Ginderachter, J.A., Vogel, S.N., Wynn, T.A., 2014. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41, 14–20.

Murray, P.J., Wynn, T.A., 2011. Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol. 11, 723–737.

Nakagome, K., Dohi, M., Okunishi, K., Tanaka, R., Miyazaki, J., Yamamoto, K., 2006. In vivo IL-10 gene delivery attenuates bleomycin induced pulmonary fibrosis by inhibiting the production and activation of TGF-beta in the lung. Thorax 61, 886–894.

Novak, M.L., Koh, T.J., 2013. Macrophage phenotypes during tissue repair. J. Leukoc. Biol. 93, 875–881.

Ortiz, L.A., Lasky, J., Hamilton Jr., R.F., Holian, A., Hoyle, G.W., Banks, W., Peschon, J. J., Brody, A.R., Lungarella, G., Friedman, M., 1998. Expression of TNF and the necessity of TNF receptors in bleomycin-induced lung injury in mice. Exp. Lung Res. 24, 721–743.

Pakshir, P., Hinz, B., 2018. The big five in fibrosis: macrophages, myofibroblasts, matrix, mechanics, and miscommunication. Matrix Biol. 68–69, 81–93.

Piguet, P.F., Ribaux, C., Karpuz, V., Grau, G.E., Kapanci, Y., 1993. Expression and localization of tumor necrosis factor-alpha and its mRNA in idiopathic pulmonary fibrosis. Am. J. Pathol. 143, 651–655.

Piguet, P.F., Vesin, C., 1994. Treatment by human recombinant soluble TNF receptor of pulmonary fibrosis induced by bleomycin or silica in mice. Eur. Respir. J. 7, 515–518.

Raghu, G., Collard, H.R., Egan, J.J., Martinez, F.J., Behr, J., Brown, K.K., Colby, T.V., Cordier, J.F., Flaherty, K.R., Lasky, J.A., Lynch, D.A., Ryu, J.H., Swigris, J.J., Wells, A.U., Ancochea, J., Bouros, D., Carvalho, C., Costabel, U., Ebina, M., Hansell, D.M., Johkoh, T., Kim, D.S., King Jr., T.E., Kondoh, Y., Myers, J., Müller, N. L., Nicholson, A.G., Richeldi, L., Selman, M., Dudden, R.F., Griss, B.S., Protzko, S.L., Schünemann, H.J., 2011. An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am. J. Respir. Crit. Care Med. 183, 788–824.

Ramachandran, P., Pellicoro, A., Vernon, M.A., Boulter, L., Aucott, R.L., Ali, A., Hartland, S.N., Snowdon, V.K., Cappon, A., Gordon-Walker, T.T., Williams, M.J., Dunbar, D.R., Manning, J.R., van Rooijen, N., Fallowfield, J.A., Forbes, S.J., Iredale, J.P., 2012. Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis. Proc. Natl. Acad. Sci. U. S. A. 109, E3186–E3195.

Rasband, W.S., 1997-2012. ImageJ. U. S. National Institutes of Health, Bethesda, Maryland, USA. http://imagej.nih.gov/ij/.

Richeldi, L., du Bois, R.M., Raghu, G., Azuma, A., Brown, K.K., Costabel, U., Cottin, V., Flaherty, K.R., Hansell, D.M., Inoue, Y., Kim, D.S., Kolb, M., Nicholson, A.G., Noble, P.W., Selman, M., Taniguchi, H., Brun, M., Le Maulf, F., Girard, M., Stowasser, S., Schlenker-Herceg, R., Disse, B., Collard, H.R., 2014. Efficacy and

safety of nintedanib in idiopathic pulmonary fibrosis. N. Engl. J. Med. 370, 2071–2082.

Richeldi, L., Costabel, U., Selman, M., Kim, D.S., Hansell, D.M., Nicholson, A.G., Brown, K.K., Flaherty, K.R., Noble, P.W., Raghu, G., Brun, M., Gupta, A., Juhel, N., Klüglich, M., du Bois, R.M., 2011. Efficacy of a tyrosine kinase inhibitor in idiopathic pulmonary fibrosis. N. Engl. J. Med. 365, 1079–1087.

Robison, G.A., Butcher, R.W., Sutherland, E.W., 1968. Cyclic AMP. Annu. Rev. Biochem. 37, 149–174.

Satoh, T., Nakagawa, K., Sugihara, F., Kuwahara, R., Ashihara, M., Yamane, F., Minowa, Y., Fukushima, K., Ebina, I., Yoshioka, Y., Kumanogoh, A., Akira, S., 2017. Identification of an atypical monocyte and committed progenitor involved in fibrosis. Nature 541, 96–101.

Schneider, C.A., Rasband, W.S., Eliceiri, K.W., 2012. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675.

Sime, P.J., Xing, Z., Graham, F.L., Csaky, K.G., Gauldie, J., 1997. Adenovector-mediated gene transfer of active transforming growth factor-beta1 induces prolonged severe fibrosis in rat lung. J. Clin. Invest. 100, 768–776.

Stahnke, T., Kowtharapu, B.S., Stachs, O., Schmitz, K.P., Wurm, J., Wree, A., Guthoff, R. F., Hovakimyan, M., 2017. Suppression of TGF-β pathway by pirfenidone decreases extracellular matrix deposition in ocular fibroblasts in vitro. PloS One 12, e0172592.

Thrall, R.S., Vogel, S.N., Evans, R., Shultz, L.D., 1997. Role of tumor necrosis factor-alpha in the spontaneous development of pulmonary fibrosis in viable motheaten mutant mice. Am. J. Pathol. 151, 1303–1310. Wollin, L., Maillet, I., Quesniaux, V., Holweg, A., Ryffel, B., 2014. Antifibrotic and antiinflammatory activity of the tyrosine kinase inhibitor nintedanib in experimental models of lung fibrosis. J. Pharmacol. Exp. Therapeut. 349, 209–220.

Wollin, L., Wex, E., Pautsch, A., Schnapp, G., Hostettler, K.E., Stowasser, S., Kolb, M., 2015. Mode of action of nintedanib in the treatment of idiopathic pulmonary fibrosis. Eur. Respir. J. 45, 1434–1445.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る