リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Isoprene emission characteristics of tall and dwarf bamboos」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Isoprene emission characteristics of tall and dwarf bamboos

Chang, Ting-Wei Kosugi, Yoshiko Okumura, Motonori Jiao, Linjie Chen, Siyu Xu, Dingkang Liu, Zhining Shibata, Shozo Chang, Ken-Hui 京都大学 DOI:10.1016/j.aeaoa.2021.100136

2021.12

概要

Considerable isoprene emissions from several bamboo species have been reported. However, bamboos are highly diverse in taxonomy and have different niches or habitats among species, and the present investigation might be insufficient to conclude a representative isoprene emission trait for bamboos. In this study, isoprene flux, leaf mass per area (LMA), photosynthetic rate, and electron transport rate (ETR) observations were conducted for 18 species within five genera of bamboo species, which include different growth types (tall and dwarf) and climates of the region of origin (temperate, warm-temperate, and subtropical). As a result, we observed that dwarf bamboos exhibited very low or no emission; in contrast, tall bamboos demonstrated considerable isoprene emission fluxes mainly in August and September 2019 at temperatures greater than 30 °C. For tall bamboos, isoprene emission fluxes, photosynthetic rate, and ETR in area-based units were correlated with LMA. To exclude the systematic correlation among isoprene emission flux, photosynthetic rate, and ETR, correlations among the observations of mass-based units were also tested, and the results demonstrated significant positive correlations. The distinction in isoprene emission traits between tall and dwarf bamboos was independent of LMA, photosynthetic rate, and ETR, as there was no difference between them. This implies that the distinction in isoprene emission was caused by genetic differences. The low emission of isoprene from the dwarf species is reasonable because dwarf bamboos usually grow in areas with relatively low heat stress and low light where the production of isoprene could be futile due to carbon loss. This study suggests separating the two bamboo types into different functional types of isoprene emissions.

この論文で使われている画像

参考文献

Archibald, A.T., Levine, J.G., Abraham, N.L., Cooke, M.C., Edwards, P.M., Heard, D.E.,

Jenkin, M.E., Karunaharan, A., Pike, R.C., Monks, P.S., Shallcross, D.E., Telford, P.J.,

Whalley, L.K., Pyle, J.A., 2011. Impacts of HOx regeneration and recycling in the

oxidation of isoprene: consequences for the composition of past, present and future

atmospheres. Geophys. Res. Lett. 38 (5), L05804. https://doi.org/10.1029/

2010GL046520.

10

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

T.-W. Chang et al.

Atmospheric Environment: X 12 (2021) 100136

Duane, M., Poma, B., Rembges, D., Astorga, C., Larsen, B.R., 2002. Isoprene and its

degradation products as strong ozone precursors in Insubria, Northern Italy. Atmos.

Environ. 36 (24), 3867–3879. https://doi.org/10.1016/S1352-2310(02)00359-X.

Farquhar, G.D., von Caemmerer, S., Berry, J.A., 1980. A biochemical model of

photosynthetic CO2 assimilation in leaves of C3 species. Planta 149 (1), 78–90.

https://doi.org/10.1007/BF00386231.

Fierravanti, A., Fierravanti, E., Cocozza, C., Tognetti, R., Rossi, S., 2017. Eligible

reference cities in relation to BVOC-derived O3 pollution. Urban For. Urban Green.

28, 73–80. https://doi.org/10.1016/j.ufug.2017.09.012.

Funk, J.L., Jones, C.G., Lerdau, M.T., 1999. Defoliation effects on isoprene emission from

Populus deltoides. Oecologia 118 (3), 333–339. https://doi.org/10.1007/

s004420050734.

Geng, F., Tie, X., Guenther, A., Li, G., Cao, J., Harley, P., 2011. Effect of isoprene

emissions from major forests on ozone formation in the city of Shanghai, China.

Atmos. Chem. Phys. 11 (20), 10449–10459. https://doi.org/10.5194/acp-11-104492011.

Geron, C., Harley, P., Guenther, A., 2001. Isoprene emission capacity for US tree species.

Atmos. Environ. 35 (19), 3341–3352. https://doi.org/10.1016/S1352-2310(00)

00407-6.

Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P.I., Geron, C., 2006.

Estimates of global terrestrial isoprene emissions using MEGAN (model of emissions

of gases and aerosols from nature). Atmos. Chem. Phys. 6 (11), 3181–3210. https://

doi.org/10.5194/acp-6-3181-2006.

Guenther, A.B., Jiang, X., Heald Colette, L., Sakulyanontvittaya, T., Duhl, T., Emmons, L.

K., Wang, X., 2012. The model of emissions of gases and aerosols from nature version

2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic

emissions. Geosci. Model Dev. (GMD) 5 (6), 1471–1492.

Harley, P.C., Litvak, M.E., Sharkey, T.D., Monson, R.K., 1994. Isoprene emission from

velvet bean leaves (interactions among nitrogen availability, growth photon flux

density, and leaf development). Plant Physiol. 105 (1), 279–285. https://doi.org/

10.1104/pp.105.1.279.

Harley, P., Guenther, A., Zimmerman, P., 1997. Environmental controls over isoprene

emission in deciduous oak canopies. Tree Physiol. 17 (11), 705–714. https://doi.

org/10.1093/treephys/17.11.705.

Kamens, R.M., Gery, M.W., Jeffries, H.E., Jackson, M., Cole, E.I., 1982. Ozone–isoprene

reactions: product formation and aerosol potential. Int. J. Chem. Kinet. 14, 955–975.

https://doi.org/10.1002/kin.550140902.

Kanakidou, M., Seinfeld, J.H., Pandis, S.N., Barnes, I., Dentener, F.J., Facchini, M.C., Van

Dingenen, R., Ervens, B., Nenes, A., Nielsen, C.J., Swietlicki, E., Putaud, J.P.,

Balkanski, Y., Fuzzi, S., Horth, J., Moortgat, G.K., Winterhalter, R., Myhre, C.E.L.,

Tsigaridis, K., Vignati, E., Stephanou, E.G., Wilson, J., 2005. Organic aerosol and

global climate modelling: a review. Atmos. Chem. Phys. 5 (4), 1053–1123. https://

doi.org/10.5194/acp-5-1053-2005.

Kleinhenz, V., Midmore, D.J., 2001. Aspects of bamboo agronomy. Adv. Agron. 74,

99–153. https://doi.org/10.1016/S0065-2113(01)74032-1.

Kroll, J.H., Ng, N.L., Murphy, S.M., Flagan, R.C., Seinfeld, J.H., 2005. Secondary organic

aerosol formation from isoprene photooxidation under high-NOx conditions.

Geophys. Res. Lett. 32, L18808. https://doi.org/10.1029/2005GL023637.

Kroll, J.H., Ng, N.L., Murphy, S.M., Flagan, R.C., Seinfeld, J.H., 2006. Secondary organic

aerosol formation from isoprenephotooxidation. Environ. Sci. Technol. 40,

1869–1877. https://doi.org/10.1021/es0524301.

Kudo, G., Amagai, Y., Hoshino, B., Kaneko, M., 2011. Invasion of dwarf bamboo into

alpine snow-meadows in northern Japan: pattern of expansion and impact on species

diversity. Ecology and Evolution 1, 85–96. https://doi.org/10.1002/ece3.9.

Kuzma, J., Fall, R., 1993. Leaf isoprene emission rate is dependent on leaf development

and the level of isoprene synthase. Plant Physiol. 101 (2), 435–440. https://doi.org/

10.1104/pp.101.2.435.

Li, R., During, H.J., Werger, M.J.A., Zhong, Z.C., 1998a. Positioning of new shoots

relative to adult shoots in groves of giant bamboo, Phyllostachys pubescens. Flora 193

(3), 315–321. https://doi.org/10.1016/S0367-2530(17)30852-6.

Li, R., Werger, M.J.A., During, H.J., Zhong, Z.C., 1998b. Biennial variation in production

of new shoots in groves of the giant bamboo Phyllostachys pubescens in Sichuan,

China. Plant Ecol. 135 (1), 103–112. https://doi.org/10.1023/A:1009761428401.

Liakoura, V., Fotelli, M.N., Rennenberg, H., Karabourniotis, G., 2009. Should structurefunction relations be considered separately for homobaric vs. heterobaric leaves?

Am. J. Bot. 96, 612–619. https://doi.org/10.3732/ajb.0800166.

Lichtenthaler, H.K., 1999. The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid

biosynthesis in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. J50, 47–65. https://

doi.org/10.1146/annurev.arplant.50.1.47.

Litvak, M.E., Loreto, F., Harley, P.C., Sharkey, T.D., Monson, R.K., 1996. The response of

isoprene emission rate and photosynthetic rate to photon flux and nitrogen supply in

aspen and white oak trees. Plant Cell Environ. 19 (5), 549–559. https://doi.org/

10.1111/j.1365-3040.1996.tb00388.x.

Loreto, F., Velikova, V., 2001. Isoprene produced by leaves protects the photosynthetic

apparatus against ozone damage, quenches ozone products, and reduces lipid

peroxidation of cellular membranes. Plant Physiol. 127 (4), 1781–1787. https://doi.

org/10.1104/pp.010497.

Monson, R.K., Harley, P.C., Litvak, M.E., Wildermuth, M., Guenther, A.B.,

Zimmerman, P.R., Fall, R., 1994. Environmental and developmental controls over

the seasonal pattern of isoprene emission from aspen leaves. Oecologia 99 (3),

260–270. https://doi.org/10.1007/BF00627738.

Monson, R.K., Grote, R., Niinemets, Ü., Schnitzler, J.-P., 2012. Modeling the isoprene

emission rate from leaves. New Phytol. 195 (3), 541–559. https://doi.org/10.1111/

j.1469-8137.2012.04204.x.

Monson, R.K., Jones, R.T., Rosenstiel, T.N., Schnitzler, J.-P., 2013. Why only some plants

emit isoprene. Plant Cell Environ. 36, 503–516. https://doi.org/10.1111/pce.12015.

Morfopoulos, C., Sperlich, D., Pe˜

nuelas, J., Filella, I., Llusi`

a, J., Medlyn, B.E.,

Niinemets, Ü., Possell, M., Sun, Z., Prentice, I.C., 2014. A model of plant isoprene

emission based on available reducing power captures responses to atmospheric CO2.

New Phytol. 203 (1), 125–139. https://doi.org/10.1111/nph.12770.

Mutanda, I., Saitoh, S., Inafuku, M., Aoyama, H., Takamine, T., Satou, K., Akutsu, M.,

Teruya, K., Tamotsu, H., Shimoji, M., Sunagawa, H., Oku, H., 2016. Gene expression

analysis of disabled and re-induced isoprene emission by the tropical tree Ficus

septica before and after cold ambient temperature exposure. Tree Physiol. 36 (7),

873–882. https://doi.org/10.1093/treephys/tpw032.

Niinemets, Ü., Tenhunen, J.D., Harley, P.C., Steinbrecher, R., 1999. A model of isoprene

emission based on energetic requirements for isoprene synthesis and leaf

photosynthetic properties for Liquidambar and Quercus. Plant Cell Environ. 22 (11),

1319–1335. https://doi.org/10.1046/j.1365-3040.1999.00505.x.

Niinemets, Ü., Reichstein, M., 2002. A model analysis of the effects of nonspecific

monoterpenoid storage in leaf tissues on emission kinetics and composition in

Mediterranean sclerophyllous Quercus species. Global Biogeochem. Cycles 16 (4),

1110. https://doi.org/10.1029/2002GB001927.

Niinemets, Ü., Keenan, T.F., Hallik, L., 2015. A worldwide analysis of within-canopy

variations in leaf structural, chemical and physiological traits across plant functional

types. New Phytol. 205 (3), 973–993. https://doi.org/10.1111/nph.13096.

Oku, H., Inafuku, M., Takamine, T., Nagamine, M., Saitoh, S., Fukuta, M., 2014.

Temperature threshold of isoprene emission from tropical trees, Ficus virgata and

Ficus septica. Chemosphere 95, 268–273. https://doi.org/10.1016/j.

chemosphere.2013.09.003.

Okumura, M., Kosugi, Y., Tani, A., 2018. Biogenic volatile organic compound emissions

from bamboo species in Japan. J. Agric. Meteorol. 74 (1), 40–44. https://doi.org/

10.2480/agrmet.D-17-00017.

Okutomi, K., Shinoda, S., Fukuda, H., 1996. Causal analysis of the invasion of broadleaved forest by bamboo in Japan. J. Veg. Sci. 7 (5), 723–728. https://doi.org/

10.2307/3236383.

Pang, X., Mu, Y., Zhang, Y., Lee, X., Yuan, J., 2009. Contribution of isoprene to

formaldehyde and ozone formation based on its oxidation products measurement in

Beijing, China. Atmos. Environ. 43 (13), 2142–2147. https://doi.org/10.1016/j.

atmosenv.2009.01.022.

Paulson, S.E., Flagan, R.C., Seinfeld, J.H., 1992. Atmospheric photooxidation of isoprene

part I: the hydroxyl radical and ground state atomic oxygen reactions. Int. J. Chem.

Kinet. 24, 79–101. https://doi.org/10.1002/kin.550240109.

Paulson, S.E., Seinfeld, J.H., 1992. Development and evaluation of a photooxidation

mechanism for isoprene. J. Geophys. Res. 97 (D18), 20703–20715. https://doi.org/

10.1029/92JD01914.

Pike, R.C., Young, P.J., 2009. How plants can influence tropospheric chemistry: the role

of isoprene emissions from the biosphere. Weather 64 (12), 332–336. https://doi.

org/10.1002/wea.416.

Poisson, N., Kanakidou, M., Crutzen, P.J., 2000. Impact of non-methane hydrocarbons on

tropospheric chemistry and the oxidizing power of the global troposphere: 3dimensional modelling results. J. Atmos. Chem. 36 (2), 157–230. https://doi.org/

10.1023/A:1006300616544.

Poorter, H., Niinemets, Ü., Poorter, L., Wright, I.J., Villar, R., 2009. Causes and

consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol.

182 (3), 565–588. https://doi.org/10.1111/j.1469-8137.2009.02830.x.

Rapparini, F., Baraldi, R., Miglietta, F., Loreto, F., 2004. Isoprenoid emission in trees of

Quercus pubescens and Quercus ilex with lifetime exposure to naturally high CO2

environment. Plant Cell Environ. 27 (4), 381–391. https://doi.org/10.1111/j.13653040.2003.01151.x.

Rasulov, B., Hüve, K., V¨

albe, M., Laisk, A., Niinemets, U., 2009. Evidence that light,

carbon dioxide, and oxygen dependencies of leaf isoprene emission are driven by

energy status in hybrid aspen. Plant Physiol. 151 (1), 448–460. https://doi.org/

10.1104/pp.109.141978.

Rasulov, B., Talts, E., Bichele, I., Niinemets, Ü., 2018. Evidence that isoprene emission is

not limited by cytosolic metabolites. Exogenous malate does not invert the reverse

sensitivity of isoprene emission to high [CO2]. Plant Physiol. 176 (2), 1573–1586.

https://doi.org/10.1104/pp.17.01463.

Rodrigues, T.B., Baker, C.R., Walker, A.P., McDowell, N., Rogers, A., Higuchi, N.,

Chambers, J.Q., Jardine, K.J., 2020. Stimulation of isoprene emissions and electron

transport rates as key mechanisms of thermal tolerance in the tropical species Vismia

guianensis. Global Change Biol. 26 (10), 5928–5941. https://doi.org/10.1111/

gcb.15213.

Rohmer, M., 1999. The discovery of a mevalonate-independent pathway for isoprenoid

biosynthesis in bacteria, algae and higher plants. Nat. Prod. Rep. 16 (5), 565–574.

https://doi.org/10.1039/A709175C.

Rosenstiel, T.N., Fisher, A.J., Fall, R., Monson, R.K., 2002. Differential accumulation of

dimethylallyl diphosphate in leaves and needles of isoprene- and methylbutenolemitting and nonemitting species. Plant Physiol. 129 (3), 1276–1284. https://doi.

org/10.1104/pp.002717.

Sasaki, K., Ohara, K., Yazaki, K., 2005. Gene expression and characterization of isoprene

synthase from Populus alba. FEBS (Fed. Eur. Biochem. Soc.) Lett. 579 (11),

2514–2518. https://doi.org/10.1016/j.febslet.2005.03.066.

Saunois, M., Stavert, A.R., Poulter, B., Bousquet, P., Canadell, J.G., Jackson, R.B.,

Raymond, P.A., Dlugokencky, E.J., Houweling, S., Patra, P.K., Ciais, P., Arora, V.K.,

Bastviken, D., Bergamaschi, P., Blake, D.R., Brailsford, G., Bruhwiler, L., Carlson, K.

M., Carrol, M., Castaldi, S., Chandra, N., Crevoisier, C., Crill, P.M., Covey, K.,

Curry, C.L., Etiope, G., Frankenberg, C., Gedney, N., Hegglin, M.I., H¨

oglundIsaksson, L., Hugelius, G., Ishizawa, M., Ito, A., Janssens-Maenhout, G., Jensen, K.M.,

Joos, F., Kleinen, T., Krummel, P.B., Langenfelds, R.L., Laruelle, G.G., Liu, L.,

Machida, T., Maksyutov, S., McDonald, K.C., McNorton, J., Miller, P.A., Melton, J.R.,

Morino, I., Müller, J., Murguia-Flores, F., Naik, V., Niwa, Y., Noce, S., O’Doherty, S.,

11

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

T.-W. Chang et al.

Atmospheric Environment: X 12 (2021) 100136

Takada, M., Inoue, T., Mishima, Y., Fujita, H., Hirano, T., Fujimura, Y., 2012.

Geographical assessment of factors for Sasa expansion in the sarobetsu mire, Japan.

Journal of Landscape Ecology 5 (1), 58–71. https://doi.org/10.2478/v10285-0120049-5.

Tani, A., Kawawata, Y., 2008. Isoprene emission from the major native Quercus spp. in

Japan. Atmos. Environ. 42 (19), 4540–4550. https://doi.org/10.1016/j.

atmosenv.2008.01.059.

Teng, A.P., Crounse, J.D., Wennberg, P.O., 2017. Isoprene peroxy radical dynamics.

Journal of the. American Chemical Society 139 (15), 5367–5377. https://doi.org/

10.1021/jacs.6b12838.

Tingey, D.T., Manning, M., Grothaus, L.C., Burns, W.F., 1979. The influence of light and

temperature on isoprene emission rates from live oak. Physiol. Plantarum 47 (2),

112–118. https://doi.org/10.1111/j.1399-3054.1979.tb03200.x.

Torii, A., 2003. Bamboo forests as invaders to surrounded secondary forests. J. Jpn. Soc.

Reveg. Technol. 28, 412–416.

Vickers, C.E., Possell, M., Laothawornkitul, J., Ryan, A.C., Hewitt, C.N., Mullineaux, P.

M., 2011. Isoprene synthesis in plants: lessons from a transgenic tobacco model.

Plant Cell Environ. 34 (6), 1043–1053. https://doi.org/10.1111/j.13653040.2011.02303.x.

Way, D.A., Schnitzler, J.P., Monson, R.K., Jackson, R.B., 2011. Enhanced isoprenerelated tolerance of heat- and light-stressed photosynthesis at low, but not high, CO2

concentrations. Oecologia 166 (1), 273–282. https://doi.org/10.1007/s00442-0111947-7.

Wiberley, A.E., Donohue, A.R., Westphal, M.M., Sharkey, T.D., 2009. Regulation of

isoprene emission from poplar leaves throughout a day. Plant Cell Environ. 32 (7),

939–947. https://doi.org/10.1111/j.1365-3040.2009.01980.x.

Wildermuth, M.C., Fall, R., 1996. Light-dependent isoprene emission (characterization of

a thylakoid-bound isoprene synthase in Salix discolor chloroplasts). Plant Physiol.

112 (1), 171–182. https://doi.org/10.1104/pp.112.1.171.

Wildermuth, M.C., Fall, R., 1998. Biochemical characterization of stromal and thylakoidbound isoforms of isoprene synthase in willow leaves. Plant Physiol. 116 (3),

1111–1123. https://doi.org/10.1104/pp.116.3.11.

Parker, R.J., Peng, C., Peng, S., Peters, G.P., Prigent, C., Prinn, R., Ramonet, M.,

Regnier, P., Riley, W.J., Rosentreter, J.A., Segers, A., Simpson, I.J., Shi, H., Smith, S.

J., Steele, L.P., Thornton, B.F., Tian, H., Tohjima, Y., Tubiello, F.N., Tsuruta, A.,

Viovy, N., Voulgarakis, A., Weber, T.S., van Weele, M., van der Werf, G.R., Weiss, R.

F., Worthy, D., Wunch, D., Yin, Y., Yoshida, Y., Zhang, W., Zhang, Z., Zhao, Y.,

Zheng, B., Zhu, Q., Zhu, Q., Zhuang, Q., 2020. The global methane budget 20002017. Earth Syst. Sci. Data 12 (3), 1561–1623. https://doi.org/10.5194/essd-121561-2020.

Schwender, J., Zeidler, J., Gr¨

oner, R., Müller, C., Focke, M., Braun, S., Lichtenthaler, F.

W., Lichtenthaler, H.K., 1997. Incorporation of 1-deoxy-D-xylulose into isoprene and

phytol by higher plants and algae. FEBS (Fed. Eur. Biochem. Soc.) Lett. 414,

129–134. https://doi.org/10.1016/S0014-5793(97)01002-8.

Sharkey, T.D., Loreto, F., 1993. Water stress, temperature, and light effects on the

capacity for isoprene emission and photosynthesis of kudzu leaves. Oecologia 95 (3),

328–333. https://doi.org/10.1007/BF00320984.

Sharkey, T.D., 1996. Isoprene synthesis by plants and animals. Endeavour 20 (2), 74–78.

https://doi.org/10.1016/0160-9327(96)10014-4.

Silver, G.M., Fall, R., 1991. Enzymatic synthesis of isoprene from dimethylallyl

diphosphate in aspen leaf extracts. Plant Physiol. 97 (4), 1588–1591. https://doi.

org/10.1104/pp.97.4.1588.

Sindelarova, K., Granier, C., Bouarar, I., Guenther, A., Tilmes, S., Stavrakou, T.,

Müller, J.-F., Kuhn, U., Stefani, P., Knorr, W., 2014. Global data set of biogenic VOC

emissions calculated by the MEGAN model over the last 30 years. Atmos. Chem.

Phys. 14 (17), 9317–9341. https://doi.org/10.5194/acp-14-9317-2014.

Siwko, M.E., Marrink, S.J., Vries, A.H., Kozubek, A., Uiterkamp, A.J., Mark, A.E., 2007.

Does isoprene protect plant membranes from thermal shock? A molecular dynamics

study. Biochim. Biophys. Acta Biomembr. 1768 (2), 198–206. https://doi.org/

10.1016/j.bbamem.2006.09.023.

Spivakovsky, C.M., Logan, J.A., Montzka, S.A., Balkanski, Y.J., Foreman-Fowler, M.,

Jones, D.B.A., Horowitz, L.W., Fusco, A.C., Brenninkmeijer, C.A.M., Prather, M.J.,

Wofsy, S.C., McElroy, M.B., 2000. Three-dimensional climatological distribution of

tropospheric OH: update and evaluation. J. Geophys. Res. 105 (D7), 8931–8980.

https://doi.org/10.1029/1999JD901006.

12

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る