リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Search for non-resonant Higgs-pair production in the bb̄bb̄ final state with the ATLAS detector」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Search for non-resonant Higgs-pair production in the bb̄bb̄ final state with the ATLAS detector

林田, 翔太 名古屋大学

2023.06.23

概要

学位報告4

別紙4
報告番号





















論 文 題 目: Search for non-resonant Higgs-pair production in the 𝑏𝑏̅ 𝑏𝑏̅ final
state with the ATLAS detector (ATLAS 実験における非共鳴ヒッグス対生成𝑏𝑏̅𝑏𝑏̅終
状態事象の探索)


名: 林田 翔太

論 文 内 容 の 要 旨
素粒子標準理論(Standard Model, SM)は、現代素粒子物理学においてあらゆる物理
現象をほぼ的確に記述できる理論モデルとして成功してきた。2012 年には CERN の
ATLAS 実験、CMS 実験でヒッグス粒子(𝐻)を発見したことにより、素粒子の質量は
ヒッグスポテンシャルの自発的対称性の破れによって獲得されること(ヒッグス機構)
が明らかになった。しかし、ヒッグスポテンシャルの実際の形状は実験的に立証できて
いない。新物理理論では、SM とは異なるさまざまなタイプのヒッグスポテンシャルも予
測されている。質量起源を真に理解する上で、その形状の測定は不可欠である。ヒッグ
スポテンシャルの形状は、ヒッグス自己結合定数の測定によってのみ決定できる。そこ
で、3 つのヒッグス粒子間の相互作用である、ヒッグス 3 点自己結合に注目した。
本論文では、ATLAS 実験で取得した重心系エネルギー√𝑠 = 13 TeV の陽子陽子衝突デ
ータ 126 fb-1 を使用した非共鳴ヒッグス対生成 𝑏𝑏̅𝑏𝑏̅終状態事象(𝑝𝑝 → 𝐻𝐻 → 𝑏𝑏̅𝑏𝑏̅)の
探索について述べる。ヒッグス対生成事象の生成断面積および運動学は、ヒッグス 3 点
自己結合定数およびヒッグス粒子と弱ボソンの 4 点(𝐻𝐻𝑉𝑉)結合定数に依存する。それ
らを調べることで、ヒッグス 3 点自己結合定数と𝐻𝐻𝑉𝑉結合定数を測定または制限できる。
2 つのヒッグス粒子が共にボトムクォーク(𝑏)とその反クォーク(𝑏̅)のペアに崩壊する
𝑏𝑏̅𝑏𝑏̅終状態は、最も大きい崩壊分岐比をもつゆえ、最も感度の高いチャンネルの一つで
ある。しかし、𝐻𝐻 → 𝑏𝑏̅𝑏𝑏̅ の探索は、膨大な量の多ジェット背景事象によって非常に難
しい。
私は、𝐻𝐻 → 𝑏𝑏̅𝑏𝑏̅ 事象の特徴に考慮した新たな事象選別を開発することで、探索感度
を向上させた。さらに、信号事象と背景事象をより区別できる運動学的変数を用いて、
カテゴリー分けすることで感度を最大化させた。多ジェット背景事象をシミュレーショ
ンで推定するのは困難なため、背景事象推定は重要な課題であった。私は、ボトムクォ
ークによるジェットを 2 つ含む事象から、4 つ含む多ジェット背景事象をニューラルネッ
トワークを駆使して正確に推定する方法を確立し、その課題を解決した。
本解析では、非共鳴ヒッグス対生成事象の証拠は見つからず、95%信頼区間でヒッグス

学位関係

対生成断面積の信号強度(𝜇)、ヒッグス 3 点自己結合定数(𝜅𝜆 )、𝐻𝐻𝑉𝑉結合定数(𝜅2𝑉 )な
どに制限を与えた。ここで、𝜇は生成断面積と SM 予測値との比、𝜅𝜆 および𝜅2𝑉 はそ
れぞれの結合定数と SM 予測値との比である。ATLAS 実験データで観測(期待)し
た𝜇の上限は 5.4 (8.1)、𝜅𝜆 の許容区間は𝜅𝜆 ∈ [−3.9, 11.1] ([−4.6, 10.8])、𝜅2𝑉 の許容区間
は𝜅2𝑉 ∈ [−0.03, 2.11] ([−0.05, 2.12])である。これらの結果は、SM 予測値 (𝜅𝜆 = 𝜅2𝑉 =
1)との一致を示している。本結果は非共鳴𝐻𝐻 → 𝑏𝑏̅𝑏𝑏̅ を主な対象にした解析から得
られた最初の結果であり、以前の解析結果と比べて上記の定数に対する制限を 2-4
倍向上した。
本論文ではさらに、ATLAS 実験における𝑏𝑏̅𝑏𝑏̅ , 𝑏𝑏̅𝛾𝛾𝑏, 𝑏̅𝑏𝜏𝜏終状態を用いた非共鳴
ヒッグス対生成事象探索の統合解析についても述べる。これら終状態を使った探索
は、信号強度およびヒッグス 3 点自己結合定数に対して最高感度を提供し、統合解
析でより厳しい制限を与えることができる。統合解析で観測(期待)した𝜇の上限は
2.4 (2.9) 、 𝜅𝜆 の 許 容 区 間 は 𝜅𝜆 ∈ [−0.6, 6.6] ([−1.0, 7.1]) 、 𝜅2𝑉 の 許 容 区 間 は 𝜅2𝑉 ∈
[0.07, 2.03] ([0.02, 2.06])である。

この論文で使われている画像

参考文献

[1] ATLAS Collaboration, G. Aad et al., Observation of a new particle in the search for the Standard

Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1–29,

arXiv:1207.7214 [hep-ex].

[2] CMS Collaboration, S. Chatrchyan et al., Observation of a new boson at a mass of 125 GeV with

the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30–61, arXiv:1207.7235 [hep-ex].

[3] G. Aad et al., The ATLAS Experiment at the CERN Large Hadron Collider, Journal of

Instrumentation 3 (2008) S08003–S08003.

[4] S. Chatrchyan et al., The CMS experiment at the CERN LHC, Journal of Instrumentation 3 (2008)

S08004–S08004.

¯ b¯

[5] ATLAS Collaboration, M. Aaboud et al., Search for pair production of Higgs bosons in the bbb

final state using proton-proton collisions at s = 13 TeV with the ATLAS detector, Journal of High

Energy Physics 2019 (2019) 30, arXiv:1804.06174 [hep-ex].

¯ b¯ process via vector-boson fusion

[6] ATLAS Collaboration, G. Aad et al., Search for the HH → bbb

production using proton-proton collisions at s = 13 TeV with the ATLAS detector, Journal of

High Energy Physics 2020 (2020) 108, arXiv:2001.05178 [hep-ex].

¯ b¯ process via

[7] ATLAS Collaboration, G. Aad et al., Erratum to: Search for the HH → bbb

vector-boson fusion production using proton-proton collisions at s = 13 TeV with the ATLAS

detector (Journal of High Energy Physics, (2020), 2020, 7, (108), 10.1007/JHEP07(2020)108),

Journal of High Energy Physics 2021 (2021).

[8] K. Agashe, H. Davoudiasl, G. Perez, and A. Soni, Warped Gravitons at the LHC and Beyond,

Phys. Rev. D 76 (2007) 036006, arXiv:hep-ph/0701186.

[9] A. L. Fitzpatrick, J. Kaplan, L. Randall, and L.-T. Wang, Searching for the Kaluza-Klein Graviton

in Bulk RS Models, JHEP 09 (2007) 013, arXiv:hep-ph/0701150.

[10] T. D. Lee, A Theory of Spontaneous T Violation, Phys. Rev. D 8 (1973) 1226–1239.

[11] G. C. Branco, P. M. Ferreira, L. Lavoura, M. N. Rebelo, M. Sher, and J. P. Silva, Theory and

phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1–102, arXiv:1106.0034

[hep-ph].

212

213

[12] P. Bagnaia et al., Evidence for Z 0 → e+ e− at the CERN pp collider, Physics Letters B 129 (1983)

130–140.

[13] UA2 Collaboration, M. Banner et al., Observation of Single Isolated Electrons of High Transverse

Momentum in Events with Missing Transverse Energy at the CERN anti-p p Collider, Phys. Lett. B

122 (1983) 476–485.

[14] D0 Collaboration, S. Abachi et al., Observation of the top quark, Phys. Rev. Lett. 74 (1995)

2632–2637, arXiv:hep-ex/9503003.

[15] S. L. Glashow, Partial Symmetries of Weak Interactions, Nucl. Phys. 22 (1961) 579–588.

[16] S. Weinberg, A Model of Leptons, Phys. Rev. Lett. 19 (1967) 1264–1266.

[17] A. Salam, Weak and Electromagnetic Interactions, Conf. Proc. C 680519 (1968) 367–377.

[18] T. D. Lee and C.-N. Yang, Question of Parity Conservation in Weak Interactions, Phys. Rev. 104

(1956) 254–258.

[19] C. S. Wu, E. Ambler, R. W. Hayward, D. D. Hoppes, and R. P. Hudson, Experimental Test of

Parity Conservation in β Decay, Phys. Rev. 105 (1957) 1413–1414.

[20] F. Englert and R. Brout, Broken Symmetry and the Mass of Gauge Vector Mesons, Phys. Rev. Lett.

13 (1964) 321–323.

[21] P. W. Higgs, Broken symmetries, massless particles and gauge fields, Phys. Lett. 12 (1964)

132–133.

[22] ATLAS Collaboration„ A detailed map of Higgs boson interactions by the ATLAS experiment ten

years after the discovery, Nature 607 (2022) 52–59, arXiv:2207.00092 [hep-ex].

[23] CMS Collaboration„ A portrait of the Higgs boson by the CMS experiment ten years after the

discovery, Nature 607 (2022) 60–68, arXiv:2207.00043 [hep-ex].

[24] D. B. Kaplan, H. Georgi, and S. Dimopoulos, Composite Higgs Scalars, Phys. Lett. B 136 (1984)

187–190.

[25] G. Panico and A. Wulzer, The Composite Nambu-Goldstone Higgs, vol. 913. Springer, 2016.

arXiv:1506.01961 [hep-ph].

[26] C. T. Hill, Is the Higgs Boson Associated with Coleman-Weinberg Dynamical Symmetry

Breaking?, Phys. Rev. D 89 (2014) 073003, arXiv:1401.4185 [hep-ph].

[27] A. J. Helmboldt, P. Humbert, M. Lindner, and J. Smirnov, Minimal conformal extensions of the

Higgs sector, JHEP 07 (2017) 113, arXiv:1603.03603 [hep-ph].

[28] K. Hashino, S. Kanemura, and Y. Orikasa, Discriminative phenomenological features of scale

invariant models for electroweak symmetry breaking, Phys. Lett. B 752 (2016) 217–220,

arXiv:1508.03245 [hep-ph].

214

[29] J. Galloway, M. A. Luty, Y. Tsai, and Y. Zhao, Induced Electroweak Symmetry Breaking and

Supersymmetric Naturalness, Phys. Rev. D 89 (2014) 075003, arXiv:1306.6354 [hep-ph].

[30] S. Chang, J. Galloway, M. Luty, E. Salvioni, and Y. Tsai, Phenomenology of Induced Electroweak

Symmetry Breaking, JHEP 03 (2015) 017, arXiv:1411.6023 [hep-ph].

[31] P. Agrawal, D. Saha, L.-X. Xu, J.-H. Yu, and C. P. Yuan, Determining the shape of the Higgs

potential at future colliders, Phys. Rev. D 101 (2020) 075023, arXiv:1907.02078 [hep-ph].

[32] M. Gell-Mann, A Schematic Model of Baryons and Mesons, Phys. Lett. 8 (1964) 214–215.

[33] A. D. Sakharov, Violation of CP Invariance, C asymmetry, and baryon asymmetry of the universe,

Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32–35.

[34] D. E. Morrissey and M. J. Ramsey-Musolf, Electroweak baryogenesis, New J. Phys. 14 (2012)

125003, arXiv:1206.2942 [hep-ph].

[35] A. Katz and M. Perelstein, Higgs Couplings and Electroweak Phase Transition, JHEP 07 (2014)

108, arXiv:1401.1827 [hep-ph].

[36] P. Huang, A. J. Long, and L.-T. Wang, Probing the Electroweak Phase Transition with Higgs

Factories and Gravitational Waves, Phys. Rev. D 94 (2016) 075008, arXiv:1608.06619

[hep-ph].

[37] V. C. Rubin and J. Ford, W. Kent, Rotation of the Andromeda Nebula from a Spectroscopic Survey

of Emission Regions, The Astrophysical Journal 159 (1970) 379.

[38] V. C. Rubin, J. Ford, W. K., and N. Thonnard, Rotational properties of 21 SC galaxies with a large

range of luminosities and radii, from NGC 4605 (R=4kpc) to UGC 2885 (R=122kpc)., The

Astrophysical Journal 238 (1980) 471–487.

[39] S. P. Martin, A Supersymmetry primer, Adv. Ser. Direct. High Energy Phys. 18 (1998) 1–98,

arXiv:hep-ph/9709356.

[40] L. Wu, J. M. Yang, C.-P. Yuan, and M. Zhang, Higgs self-coupling in the MSSM and NMSSM after

the LHC Run 1, Phys. Lett. B 747 (2015) 378–389, arXiv:1504.06932 [hep-ph].

[41] K. Lane and E. Pilon, Phenomenology of the new light Higgs bosons in Gildener-Weinberg

models, Phys. Rev. D 101 (2020) 055032, arXiv:1909.02111 [hep-ph].

[42] V. Barger, T. Han, P. Langacker, B. McElrath, and P. Zerwas, Effects of genuine dimension-six

Higgs operators, Phys. Rev. D 67 (2003) 115001, arXiv:hep-ph/0301097.

[43] L. Di Luzio, R. Gröber, and M. Spannowsky, Maxi-sizing the trilinear Higgs self-coupling: how

large could it be?, Eur. Phys. J. C 77 (2017) 788, arXiv:1704.02311 [hep-ph].

[44] L. Di Luzio, J. F. Kamenik, and M. Nardecchia, Implications of perturbative unitarity for scalar

di-boson resonance searches at LHC, Eur. Phys. J. C 77 (2017) 30, arXiv:1604.05746

[hep-ph].

215

[45] J. Alison et al., Higgs boson potential at colliders: Status and perspectives, Rev. Phys. 5 (2020)

100045, arXiv:1910.00012 [hep-ph].

[46] G. P. Salam, Elements of QCD for hadron colliders, arXiv:1011.5131 [hep-ph].

[47] J. Gao, L. Harland-Lang, and J. Rojo, The Structure of the Proton in the LHC Precision Era, Phys.

Rept. 742 (2018) 1–121, arXiv:1709.04922 [hep-ph].

[48] M. Grazzini, G. Heinrich, S. Jones, S. Kallweit, M. Kerner, J. M. Lindert, and J. Mazzitelli, Higgs

boson pair production at NNLO with top quark mass effects, JHEP 05 (2018) 059,

arXiv:1803.02463 [hep-ph].

[49] ATLAS Collaboration, M. Aaboud et al., Observation of Higgs boson production in association

with a top quark pair at the LHC with the ATLAS detector, Phys. Lett. B 784 (2018) 173–191,

arXiv:1806.00425 [hep-ex].

[50] CMS Collaboration, A. M. Sirunyan et al., Observation of ttH production, Phys. Rev. Lett. 120

(2018) 231801, arXiv:1804.02610 [hep-ex].

[51] M. Gouzevitch and A. Carvalho, A review of Higgs boson pair production, Rev. Phys. 5 (2020)

100039.

[52] W. Buchmuller and D. Wyler, Effective Lagrangian Analysis of New Interactions and Flavor

Conservation, Nucl. Phys. B 268 (1986) 621–653.

[53] C. N. Leung, S. T. Love, and S. Rao, Low-Energy Manifestations of a New Interaction Scale:

Operator Analysis, Z. Phys. C 31 (1986) 433.

[54] I. Brivio and M. Trott, The Standard Model as an Effective Field Theory, Phys. Rept. 793 (2019)

1–98, arXiv:1706.08945 [hep-ph].

[55] R. Alonso, M. B. Gavela, L. Merlo, S. Rigolin, and J. Yepes, The Effective Chiral Lagrangian for

a Light Dynamical ”Higgs Particle”, Phys. Lett. B 722 (2013) 330–335, arXiv:1212.3305

[hep-ph], [Erratum: Phys.Lett.B 726, 926 (2013)].

[56] G. Buchalla, O. Catà, and C. Krause, Complete Electroweak Chiral Lagrangian with a Light

Higgs at NLO, Nucl. Phys. B 880 (2014) 552–573, arXiv:1307.5017 [hep-ph], [Erratum:

Nucl.Phys.B 913, 475–478 (2016)].

[57] B. Grzadkowski, M. Iskrzynski, M. Misiak, and J. Rosiek, Dimension-Six Terms in the Standard

Model Lagrangian, JHEP 10 (2010) 085, arXiv:1008.4884 [hep-ph].

[58] M. Capozi and G. Heinrich, Exploring anomalous couplings in Higgs boson pair production

through shape analysis, JHEP 03 (2020) 091, arXiv:1908.08923 [hep-ph].

[59] LHC Machine, JINST 3 (2008) S08001.

[60] E. Mobs, The CERN accelerator complex in 2019. Complexe des accélérateurs du CERN en 2019,

https://cds.cern.ch/record/2684277, General Photo.

216

[61] ATLAS Collaboration„ Public ATLAS Luminosity Results for Run-2 of the LHC, https:

//twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResultsRun2.

[62] J. Pequenao and P. Schaffner, How ATLAS detects particles: diagram of particle paths in the

detector, https://cds.cern.ch/record/1505342.

[63] T. Kawaguchi, Search for the dimuon decay of the Higgs boson in 139 fb−1 of pp collisions at

s = 13 TeV with the ATLAS detector., https://cds.cern.ch/record/2754084.

[64] ATLAS Collaboration„ ATLAS magnet system: Technical design report,.

[65] K. Potamianos, The upgraded Pixel detector and the commissioning of the Inner Detector tracking

of the ATLAS experiment for Run-2 at the Large Hadron Collider, PoS EPS-HEP2015 (2015) 261,

arXiv:1608.07850 [physics.ins-det].

[66] G. Ripellino, The alignment of the ATLAS Inner Detector in Run-2, PoS LHCP2016 (2016) 196.

[67] ATLAS Collaboration„ ATLAS liquid-argon calorimeter: Technical Design Report,

https://cds.cern.ch/record/331061.

[68] M. INOKUTI, Inelastic Collisions of Fast Charged Particles with Atoms and Molecules—The

Bethe Theory Revisited, Rev. Mod. Phys. 43 (1971) 297–347,

https://link.aps.org/doi/10.1103/RevModPhys.43.297.

[69] ATLAS Collaboration, M. Aaboud et al., Performance of the ATLAS Trigger System in 2015, Eur.

Phys. J. C 77 (2017) 317, arXiv:1611.09661 [hep-ex].

[70] R. Achenbach et al., The ATLAS level-1 calorimeter trigger, JINST 3 (2008) P03001.

[71] ATLAS Collaboration, M. Aaboud et al., Performance of the ATLAS Track Reconstruction

Algorithms in Dense Environments in LHC Run 2, Eur. Phys. J. C 77 (2017) 673,

arXiv:1704.07983 [hep-ex].

[72] A. Rosenfeld and J. L. Pfaltz, Sequential Operations in Digital Picture Processing, J. ACM 13

(1966) 471–494, https://doi.org/10.1145/321356.321357.

[73] ATLAS Collaboration, G. Aad et al., A neural network clustering algorithm for the ATLAS silicon

pixel detector, JINST 9 (2014) P09009, arXiv:1406.7690 [hep-ex].

[74] ATLAS Collaboration, G. Aad et al., Topological cell clustering in the ATLAS calorimeters and its

performance in LHC Run 1, Eur. Phys. J. C 77 (2017) 490, arXiv:1603.02934 [hep-ex].

[75] ATLAS Collaboration, M. Aaboud et al., Reconstruction of primary vertices at the ATLAS

experiment in Run 1 proton–proton collisions at the LHC, Eur. Phys. J. C 77 (2017) 332,

arXiv:1611.10235 [physics.ins-det].

[76] ATLAS Collaboration, M. Aaboud et al., Jet reconstruction and performance using particle flow

with the ATLAS Detector, Eur. Phys. J. C 77 (2017) 466, arXiv:1703.10485 [hep-ex].

217

[77] M. Cacciari, G. P. Salam, and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008) 063,

arXiv:0802.1189 [hep-ph].

[78] ATLAS Collaboration, G. Aad et al., Jet energy scale and resolution measured in proton–proton

collisions at s = 13 TeV with the ATLAS detector, Eur. Phys. J. C 81 (2021) 689,

arXiv:2007.02645 [hep-ex].

[79] M. Cacciari, G. P. Salam, and G. Soyez, The Catchment Area of Jets, JHEP 04 (2008) 005,

arXiv:0802.1188 [hep-ph].

[80] ATLAS Collaboration„ Tagging and suppression of pileup jets,.

[81] A. Hoecker, P. Speckmayer, J. Stelzer, J. Therhaag, E. von Toerne, H. Voss, M. Backes, T. Carli,

O. Cohen, A. Christov, D. Dannheim, K. Danielowski, S. Henrot-Versille, M. Jachowski,

K. Kraszewski, A. Krasznahorkay, M. Kruk, Y. Mahalalel, R. Ospanov, X. Prudent, A. Robert,

D. Schouten, F. Tegenfeldt, A. Voigt, K. Voss, M. Wolter, and A. Zemla, TMVA - Toolkit for

Multivariate Data Analysis,.

[82] ATLAS Collaboration, G. Aad et al., ATLAS b-jet identification performance and efficiency

measurement with tt¯ events in pp collisions at s = 13 TeV, Eur. Phys. J. C 79 (2019) 970,

arXiv:1907.05120 [hep-ex].

[83] ATLAS Collaboration, C. Magliocca, Measurement of the track impact parameters resolution with

the ATLAS experiment at LHC using 2016-2018 data, Nuovo Cim. C 44 (2021) 55.

[84] ATLAS Collaboration„ Identification of Jets Containing b-Hadrons with Recurrent Neural

Networks at the ATLAS Experiment,.

[85] ATLAS Collaboration„ Topological b-hadron decay reconstruction and identification of b-jets

with the JetFitter package in the ATLAS experiment at the LHC,.

[86] R. Fruhwirth, Application of Kalman filtering to track and vertex fitting, Nucl. Instrum. Meth. A

262 (1987) 444–450.

[87] ATLAS Collaboration„ Expected performance of the 2019 ATLAS b-taggers,

http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2019-005, Accessed

on Nov. 2022.

[88] ATLAS Collaboration„ Calibration of the ATLAS b-tagging algorithm in tt¯ semi-leptonic events,.

[89] A. D. Bukin, Fitting function for asymmetric peaks,.

[90] D. J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth. A 462 (2001)

152–155.

[91] ATLAS Collaboration, G. Aad et al., The ATLAS Simulation Infrastructure, Eur. Phys. J. C 70

(2010) 823–874, arXiv:1005.4568 [physics.ins-det].

218

[92] GEANT4 Collaboration, S. Agostinelli et al., GEANT4–a simulation toolkit, Nucl. Instrum. Meth.

A 506 (2003) 250–303.

[93] P. Nason, A New method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11

(2004) 040, arXiv:hep-ph/0409146.

[94] S. Frixione, P. Nason, and C. Oleari, Matching NLO QCD computations with Parton Shower

simulations: the POWHEG method, JHEP 11 (2007) 070, arXiv:0709.2092 [hep-ph].

[95] S. Alioli, P. Nason, C. Oleari, and E. Re, A general framework for implementing NLO calculations

in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043, arXiv:1002.2581

[hep-ph].

[96] J. Butterworth et al., PDF4LHC recommendations for LHC Run II, J. Phys. G 43 (2016) 023001,

arXiv:1510.03865 [hep-ph].

[97] T. Sjöstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel, C. O.

Rasmussen, and P. Z. Skands, An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191

(2015) 159–177, arXiv:1410.3012 [hep-ph].

[98] A. Buckley, ATLAS Pythia 8 tunes to 7 TeV data,.

[99] R. D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244–289,

arXiv:1207.1303 [hep-ph].

[100] M. Bahr et al., Herwig++ Physics and Manual, Eur. Phys. J. C 58 (2008) 639–707,

arXiv:0803.0883 [hep-ph].

[101] S. Gieseke, C. Rohr, and A. Siodmok, Colour reconnections in Herwig++, Eur. Phys. J. C 72

(2012) 2225, arXiv:1206.0041 [hep-ph].

[102] L. A. Harland-Lang, A. D. Martin, P. Motylinski, and R. S. Thorne, Parton distributions in the

LHC era: MMHT 2014 PDFs, Eur. Phys. J. C 75 (2015) 204, arXiv:1412.3989 [hep-ph].

[103] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H. S. Shao, T. Stelzer,

P. Torrielli, and M. Zaro, The automated computation of tree-level and next-to-leading order

differential cross sections, and their matching to parton shower simulations, JHEP 07 (2014) 079,

arXiv:1405.0301 [hep-ph].

[104] F. A. Dreyer and A. Karlberg, Vector-Boson Fusion Higgs Pair Production at N3 LO, Phys. Rev.

D 98 (2018) 114016, arXiv:1811.07906 [hep-ph].

[105] J. Baglio, A. Djouadi, R. Gröber, M. M. Mühlleitner, J. Quevillon, and M. Spira, The

measurement of the Higgs self-coupling at the LHC: theoretical status, JHEP 04 (2013) 151,

arXiv:1212.5581 [hep-ph].

[106] L.-S. Ling, R.-Y. Zhang, W.-G. Ma, L. Guo, W.-H. Li, and X.-Z. Li, NNLO QCD corrections to

Higgs pair production via vector boson fusion at hadron colliders, Phys. Rev. D 89 (2014) 073001,

arXiv:1401.7754 [hep-ph].

219

[107] F. A. Dreyer and A. Karlberg, Fully differential Vector-Boson Fusion Higgs Pair Production at

Next-to-Next-to-Leading Order, Phys. Rev. D 99 (2019) 074028, arXiv:1811.07918 [hep-ph].

[108] C. Degrande, G. Durieux, F. Maltoni, K. Mimasu, E. Vryonidou, and C. Zhang, Automated

one-loop computations in the standard model effective field theory, Phys. Rev. D 103 (2021)

096024, arXiv:2008.11743 [hep-ph].

[109] ATLAS Collaboration„ Validation of signal Monte Carlo event generation in searches for Higgs

boson pairs with the ATLAS detector,.

[110] T. Kanamori, S. Hido, and M. Sugiyama, A Least-squares Approach to Direct Importance

Estimation, J. Mach. Learn. Res. 10 (2009) 1391–1445.

[111] K. B. George V. Moustakides, Training Neural Networks for Likelihood/Density Ratio

Estimation, arXiv:1911.00405 [eess.SP].

[112] B. Efron, Bootstrap Methods: Another Look at the Jackknife, The Annals of Statistics 7 (1979) 1

– 26.

[113] ATLAS Collaboration, M. Aaboud et al., Luminosity determination in pp collisions at s = 8

TeV using the ATLAS detector at the LHC, Eur. Phys. J. C 76 (2016) 653, arXiv:1608.03953

[hep-ex].

[114] LHC Higgs Cross Section Working Group Collaboration, D. de Florian et al., Handbook of LHC

Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector, arXiv:1610.07922

[hep-ph].

[115] J. Baglio, F. Campanario, S. Glaus, M. Mühlleitner, J. Ronca, and M. Spira, gg → HH :

Combined uncertainties, Phys. Rev. D 103 (2021) 056002, arXiv:2008.11626 [hep-ph].

[116] B. Mellado Garcia, P. Musella, M. Grazzini, and R. Harlander, CERN Report 4: Part I Standard

Model Predictions, https://cds.cern.ch/record/2150771.

[117] G. Cowan, K. Cranmer, E. Gross, and O. Vitells, Asymptotic formulae for likelihood-based tests

of new physics, Eur. Phys. J. C 71 (2011) 1554, arXiv:1007.1727 [physics.data-an],

[Erratum: Eur.Phys.J.C 73, 2501 (2013)].

[118] ROOT Collaboration, K. Cranmer, G. Lewis, L. Moneta, A. Shibata, and W. Verkerke,

HistFactory: A tool for creating statistical models for use with RooFit and RooStats,.

[119] J. Neyman and E. S. Pearson, On the Problem of the Most Efficient Tests of Statistical

Hypotheses, Phil. Trans. Roy. Soc. Lond. A 231 (1933) 289–337.

[120] G. Cowan, K. Cranmer, E. Gross, and O. Vitells, Erratum to: Asymptotic formulae for

likelihood-based tests of new physics, Eur. Phys. J. C 73 (2013) 2501.

[121] J. Ellis, M. Madigan, K. Mimasu, V. Sanz, and T. You, Top, Higgs, Diboson and Electroweak Fit

to the Standard Model Effective Field Theory, JHEP 04 (2021) 279, arXiv:2012.02779

[hep-ph].

220

[122] J. Ellis, C. W. Murphy, V. Sanz, and T. You, Updated Global SMEFT Fit to Higgs, Diboson and

Electroweak Data, JHEP 06 (2018) 146, arXiv:1803.03252 [hep-ph].

[123] ATLAS Collaboration, G. Aad et al., Search for Higgs boson pair production in the two bottom

quarks plus two photons final state in pp collisions at s = 13 TeV with the ATLAS detector,

Phys. Rev. D 106 (2022) 052001.

[124] ATLAS Collaboration„ Search for resonant and non-resonant Higgs boson pair production in the

¯ + τ− decay channel using 13 TeV pp collision data from the ATLAS detector,

bbτ

arXiv:2209.10910 [hep-ex].

[125] ATLAS Collaboration, G. Aad et al., Combination of searches for Higgs boson pairs in pp

collisions at s =13 TeV with the ATLAS detector, Phys. Lett. B 800 (2020) 135103,

arXiv:1906.02025 [hep-ex].

[126] ATLAS Collaboration„ Combination of searches for non-resonant and resonant Higgs boson

¯ + τ− and bbb

¯ b¯ decay channels using pp collisions at √ s = 13 TeV

pair production in the bbγγ,

bbτ

with the ATLAS detector,.

[127] I. Zurbano Fernandez et al., High-Luminosity Large Hadron Collider (HL-LHC): Technical

design report,.

[128] ATLAS Collaboration„ Measurement prospects of the pair production and self-coupling of the

Higgs boson with the ATLAS experiment at the HL-LHC,.

[129] ATLAS, CMS Collaboration„ Addendum to the report on the physics at the HL-LHC, and

perspectives for the HE-LHC: Collection of notes from ATLAS and CMS, CERN Yellow Rep.

Monogr. 7 (2019) Addendum, arXiv:1902.10229 [hep-ex].

[130] ATLAS Collaboration Collaboration„ Projected sensitivity of Higgs boson pair production

¯ and bbτ

¯ + τ− final states with the ATLAS detector at the HL-LHC,

combining the bbγγ

https://cds.cern.ch/record/2802127.

[131] M. Cepeda et al., Report from Working Group 2: Higgs Physics at the HL-LHC and HE-LHC,

CERN Yellow Rep. Monogr. 7 (2019) 221–584, arXiv:1902.00134 [hep-ph].

[132] CMS Collaboration„ Prospects for non-resonant Higgs boson pair production measurement in

bbγγ final states in proton-proton collisions at s = 14 TeV at the High-Luminosity LHC,

https://cds.cern.ch/record/2803918.

[133] A. Ruiz-Martinez, J. Montejo Berlingen, D. Zanzi, T. J. Khoo, M. A. Owen, and S. Shaw, Run 3

trigger menu design, https://cds.cern.ch/record/2683881.

[134] G. Buchalla, M. Capozi, A. Celis, G. Heinrich, and L. Scyboz, Higgs boson pair production in

non-linear Effective Field Theory with full mt -dependence at NLO QCD, JHEP 09 (2018) 057,

arXiv:1806.05162 [hep-ph].

[135] W. Buttinger and M. Lefebvre, Formulae for Estimating Significance, tech. rep., CERN, Geneva,

2018. https://cds.cern.ch/record/2643488.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る