リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Two-Step Nanoparticle Crystallization via DNA-Guided Self-Assembly and the Nonequilibrium Dehydration Process」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Two-Step Nanoparticle Crystallization via DNA-Guided Self-Assembly and the Nonequilibrium Dehydration Process

Sumi, Hayato Ohta, Noboru Sekiguchi, Hiroshi Harada, Shunta Ujihara, Toru Tsukamoto, Katsuo Tagawa, Miho 名古屋大学

2021.08.04

概要

DNA strands are powerful tools as ligand molecules that bind nanoparticles to each other via programmable self-assembly for colloidal crystallization. We found that hydrated DNA-functionalized nanoparticle (DNA-NP) superlattices with a properly controlled volume fraction and spatial arrangement of nanoparticles successfully maintained their crystallinity even after dehydration, which involves drastic contraction. A detailed study of the structural changes was performed for the self-assembled DNA-NP sample using small-angle X-ray scattering (SAXS) after dehydration. Then, an optimal volume fraction of nanoparticles in the superlattice, ϕ, which minimized the level of distortion of the dehydrated superlattice, was found for each bcc and fcc structure. By acquiring clear SAXS diffraction patterns showing crystal symmetries for dehydrated DNA-NP superlattices, their lattice distortion was evaluated using our analysis technique, which is based on Hosemann’s paracrystalline theory and involves SAXS and scanning electron microscopy data. Geometrical calculations substantiated the ease of movement of a nanoparticle under the influence of repulsions from adjacent particles that mainly affect the dehydration stability. These results suggest that it is possible to design the crystal structure of solid nanoparticle superlattices via DNA-guided nanoparticle assembly under a near-equilibrium state in solution as the first step, followed by dehydration under nonequilibrium conditions as the second step.

この論文で使われている画像

参考文献

1. Boles, M. A.; Enge, M.; Talapin, D. V. Self-assembly of colloidal nanocrystals: From intricate structures to functional materials. Chem. Rev. 2006, 116, 11220−11289.

2. Bishop, K. J. M.; Wilmer, C. E.; Soh, S.; Grzybowski, B. A. Nanoscale forces and their uses in self-assembly. small 2009, 14, 1600–1630.

3. Nykypanchuk, D.; Maye, M. M.; Lelie, D. van der; Gang, O. DNA-guided crystallization of colloidal nanoparticles. Nature 2008, 451(7178), 549–52.

4. Park, S. Y.; Lytton-Jean, A. K. R.; Lee, B.; Weigand, S.; Schatz, G. C.; Mirkin, C. A. DNA- programmable nanoparticle crystallization. Nature 2008, 451(7178), 553–556.

5. Macfarlane, R. J.; Lee, B.; Jones, M. R.; Harris, N.; Schatz, G. C.; Mirkin, C. A. Nanoparticle superlattice engineering with DNA. Science 2011, 334(6053), 204–208.

6. Zhang, C.; Macfarlane, R. J.; Young, K. L.; Choi, C. H. J.; Hao, L.; Auyeung, E.; Liu, G.; Zhou, X.; Mirkin, C. A. A general approach to DNA-programmable atom equivalents. Nat. Mater. 2013, 12(8), 741–746.

7. O’Brien, M. N.; Jones, M. R.; Lee, B.; Mirkin, C. A. Anisotropic nanoparticle complementarity in DNA-mediated co-crystallization. Nat. Mater. 2015, 14(8), 833–839.

8. Lu, F.; Yager, K. G.; Zhang, Y.; Xin, H.; Gang, O. Superlattices assembled through shape- induced directional binding. Nat. Commun. 2015, 6, 6912.

9. Radha, B.; Senesi, A. J.; O’Brien, M. N.; Wang, M. X.; Auyeung, E.; Lee, B.; Mirkin, C. A. Reconstitutable nanoparticle superlattices. Nano Lett. 2014, 14(4), 2162–2167.

10. Xiong, H; Lelie, D. van der; Gang, O. DNA Linker-Mediated Crystallization of Nanocolloids. J. Am. Chem. Soc. 2008, 130, 2442–2443.

11. Jones, M. R.; Macfarlane, R. J.; Lee, B.; Zhang, J.; Young, K. L.; Senesi, A. J.; Mirkin, C. A. DNA-nanoparticle superlattices formed from anisotropic building blocks. Nat. Mater. 2010, 9(11), 913–917.

12. Auyeung, E.; Macfarlane, R. J.; Choi, C. H. J.; Cutler, J. I.; Mirkin, C. A. Transitioning DNA-engineered nanoparticle superlattices from solution to the solid state. Adv. Mater. 2012, 24(38), 5181–5186.

13. Cheng, W.; Hartman, M. R.; Smilgies, D.-M.; Long, R.; Campolongo, M. J.; Li, R; Sekar, K.; Hui, C.-Y.; Luo, D. Probing in real time the soft crystallization of DNA-capped nanoparticles. Angew Chem Int Ed Engl. 2010, 49(2), 380−384.

14. Auyeung, E.; Li, T. I. N. G.; Senesi, A. J.; Schmucker, A. L.; Pals, B. C.; Cruz, M. O.; Mirkin, C. A. DNA-mediated nanoparticle crystallization into Wulff polyhedra. Nature 2014, 505, 73-77.

15. Ohta, N.; Sekiguchi H.; Sasaki, Y. C.; Yagi, N. Absolute scale calibration with use of excess scattering length for small-angle X-ray scattering. J. Appl. Cryst. 2014, 47, 654-658.

16. Huang, T. C.; Toraya, H.; Blanton, T. N.; Wu, Y. X-ray powder diffraction analysis of silver behenate, a possible low-angle diffraction standard. J. Appl. Cryst. 1993, 26, 180–184.

17. Ida, T.; Ando, M.; Toraya, H. Extended pseudo-voigt function for approximating the voigt profile. J. Appl. Cryst. 2000, 33, 1311–1316.

18. Balzar, D. X-ray diffraction line broadening: Modeling and applications to high-Tc superconductors. J. Res. Natl. Inst. Stand. Technol. 1993, 98, 321–353.

19. Zhang, Y.; Lu, F.; Yager, K. G.; Lelie, D. van der; Gang, O. A general strategy for the DNA- mediated self-assembly of functional nanoparticles into heterogeneous systems. Nat. nanotechnology 2013, 8, 865–872.

20. Hosemann, R. The interference theory of ideal paracrystals. Acta Cryst. 1952, 5, 612–614.

21. Hosemann, R.; Lemm, K.; Wilke, W. The paracrystal as a model for liquid crystals.Molecular Crystals. 1967, 2, 333–362.

22. Hosemann, R.; Hindeleh, A. M. Structure of crystalline and paracrystalline condensed matter. J. Macromol Sci., Part B: Physics 1995, 34, 327–356.

23. Matsuoka, H.; Tanaka, H.; Hashimoto, T.; Ise, N. Elastic scattering from cubic lattice systems with paracrystalline distortion. Physical Review B 1987, 36, 1754–1765.

24. Matsuoka, H.; Tanaka, H.; Iizuka, N.; Hashimoto, T.; Ise, N. Elastic scattering from cubic lattice systems with paracrystalline distortion. II. Physical Review B 1987, 41, 3854–3856.

25. Macfarlane, R. J.; Jones, M. R.; Senesi, A. J.; Young, K. L.; Lee, B.; Wu, J.; Mirkin, C. A. Establishing the Design Rules for DNA-Mediated Programmable Colloidal Crystallization, Angew Chem Int Ed Engl. 2010, 49(27), 4589–4592.

26. Korgel, B. A.; Fitzmaurice, D. Condensation of ordered nanocrystal thin films. Phys. Rev.Lett. 1998, 80, 3531–3534.

27. Boles, M.; Talapin, D. Many-Body Effects in Nanocrystal Superlattices: Departure from Sphere Packing Explains Stability of Binary Phases. J. Am. Chem. Soc. 2015, 137, 4494−4502.

28. Korgel, B. A.; Fullam, S.; Connolly, S.; Fitzmaurice, D. Assembly and Self-Organization of Silver Nanocrystal Superlattices: Ordered “Soft Spheres”. J. Phys. Chem. B 1998, 102, 8379−8388.

29. Vo, T.; Venkatasubramanian, V.; Kumar, S.; Srinivasan, B.; Pal, S.; Zhang, Y.; Gang, O. Stoichiometric control of DNA-grafted colloid self-assembly. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 4982–4987.

30. Gennes, P. G. de Conformation of polymers attached to an interface. Macromolecules, 1980,13, 1069−1075.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る