リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Comparative Study on Charge–Discharge Behavior of Graphite Positive Electrode in FSA- and FTA-Based Ionic Liquid Electrolytes with Different Alkali Metal Cations」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Comparative Study on Charge–Discharge Behavior of Graphite Positive Electrode in FSA- and FTA-Based Ionic Liquid Electrolytes with Different Alkali Metal Cations

Nikaido, Takafumi Yadav, Alisha Yamamoto, Takayuki Nohira, Toshiyuki 京都大学 DOI:10.1149/1945-7111/acb8e7

2023.02

概要

Dual-carbon batteries (DCBs), in which both the positive and negative electrodes are composed of carbon-based materials, are promising next-generation batteries owing to their limited usage of scarce metals and high operating voltages. In typical DCBs, metal cations and anions in the electrolytes are consumed simultaneously at the negative and positive electrodes, respectively, which can rapidly deplete the charge carrier ions in the electrolytes. In this study, to solve this challenge, we focused on ionic liquids (ILs) as DCB electrolytes because they are solely composed of ions and are therefore intrinsically highly concentrated electrolytes. Charge–discharge behavior of the graphite positive electrodes was investigated in several IL electrolytes containing alkali metal cations (Li⁺, Na⁺, and K⁺) and amide anions (FSA− and FTA−; FSA = bis(fluorosulfonyl)amide, FTA = (fluorosulfonyl)(trifluoromethylsulfonyl)amide). It was found that FTA-based ILs conferred superior cycling stability and higher capacities to graphite electrodes compared to FSA-based ILs, which was explained by the suppression of the corrosion of the aluminum current collector at high voltages. The highest reversible capacity of approximately 100 mAh g⁻¹ was obtained for the K-ion system using FTA-based ILs at 20 mA g⁻¹, which involved the formation of FTA–graphite intercalation compounds, as confirmed by ex situ X-ray diffraction.

この論文で使われている画像

参考文献

1. H. C. Hesse, M. Schimpe, D. Kucevic, and A. Jossen, Energies, 10, 2017 (2017).

2. T. Chen, Y. Jin, H. Lv, A. Yang, M. Liu, B. Chen, Y. Xie, and Q. Chen, Trans. Tianjin Univ., 26, 208 (2020).

3. Y. Chen, Y. Kang, Y. Zhao, L. Wang, J. Liu, Z. Liang, X. He, X. Li, N. Tavajohi, and B. Li, J. Energy Chem., 59, 83 (2021).

4. P. W. Gruber, P. A. Medina, G. A. Keoleian, S. E. Kesler, M. P. Everson, and T. J. Wallington, J. Ind. Ecol., 15, 760 (2011).

5. M. Watanabe, M. L. Thomas, S. Zhang, K. Ueno, T. Yasuda, and K. Dokko, Chem. Rev., 117, 7190 (2017).

6. H. Sakaebe and H. Matsumoto, Electrochem. Commun., 5, 594 (2003).

7. M. Ishikawa, T. Sugimoto, M. Kikuta, E. Ishiko, and M. Kono, J. Power Sources, 162, 658 (2006).

8. A. Guerfi, S. Duchesne, Y. Kobayashi, A. Vijh, and K. Zaghib, J. Power Sources, 175, 866 (2008).

9. N. Yabuuchi, K. Kubota, M. Dahbi, and S. Komaba, Chem. Rev., 114, 11636 (2014).

10. T. Hosaka, K. Kubota, A. S. Hameed, and S. Komaba, Chem. Rev., 120, 6358 (2020).

11. K. Matsumoto, Y. Okamoto, T. Nohira, and R. Hagiwara, J. Phys. Chem. C, 119, 7648 (2015).

12. A. Fukunaga, T. Nohira, R. Hagiwara, K. Numata, E. Itani, S. Sakai, and K. Nitta, J. Appl. Electrochem., 46, 487 (2016).

13. T. Yamamoto, K. Mitsuhashi, K. Matsumoto, R. Hagiwara, A. Fukunaga, S. Sakai, K. Nitta, and T. Nohira, Electrochemistry, 87, 175 (2019).

14. T. Yamamoto, K. Matsumoto, R. Hagiwara, and T. Nohira, J. Phys. Chem. C, 121, 18450 (2017).

15. T. Yamamoto, S. Nishijima, and T. Nohira, J. Phys. Chem. B, 124, 8380 (2020).

16. T. Yamamoto and T. Nohira, Chem. Commun., 56, 2538 (2020).

17. T. Yamamoto, A. Yadav, and T. Nohira, J. Electrochem. Soc., 169, 050507 (2022).

18. J. A. Seel and J. R. Dahn, J. Electrochem. Soc., 147, 892 (2000).

19. W. Yan and M. M. Lerner, J. Electrochem. Soc., 148, D83 (2001).

20. T. Ishihara, M. Koga, H. Matsumoto, and M. Yoshio, Electrochem. Solid-State Lett., 10, A74 (2007).

21. T. Fukutsuka, F. Yamane, K. Miyazaki, and T. Abe, J. Electrochem. Soc., 163, A499 (2016).

22. R. T. Carlin, H. C. De Long, J. Fuller, and P. C. Trulove, J. Electrochem. Soc., 141, L73 (1994).

23. T. Placke, O. Fromm, S. M. Lux, P. Bieker, S. Rothermel, H. W. Meyer, S. Passerini, and M. Winter, J. Electrochem. Soc., 159, A1755 (2012).

24. G. Schmuelling, T. Placke, R. Kloepsch, O. Fromm, H. W. Meyer, S. Passerini, and M. Winter, J. Power Sources, 239, 563 (2013).

25. S. Aladinli, F. Bordet, K. Ahlbrecht, J. Tubke, and M. Holzapfel, Electrochim. Acta, 231, 468 (2017).

26. K. Beltrop, S. Beuker, A. Heckmann, M. Winter, and T. Placke, Energy Environ. Sci., 10, 2090 (2017).

27. P. Meister, V. Siozios, J. Reiter, S. Klamor, S. Rothermel, O. Fromm, H. W. Meyer, M. winter, and T. Plack, Electrochim. Acta, 130, 625 (2014).

28. K. Beltrop, P. Meister, S. Klein, A. Heckmann, M. Grünebaum, H.-D. Wiemhöfer, M. Winter, and T. Placke, Electrochim. Acta, 209, 44 (2016).

29. R.-S. Kühnel and A. Balducci, J. Power Sources, 249, 163 (2014).

30. B. Garcia and M. Armand, J. Power Sources, 132, 206 (2004).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る