リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「頑健な組織形態形成を支える分子基盤の遺伝学的解析」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

頑健な組織形態形成を支える分子基盤の遺伝学的解析

和田, 弥生 京都大学 DOI:10.14989/doctor.k24043

2022.03.23

概要

個体発生は、環境変化や遺伝子変異、物理的損傷等の撹乱の存在下でも決まった形の組織・器官を構築する頑健なシステムである。しかし、ヒトにおいてリボソームタンパク質遺伝子にヘテロ変異が生じると、ダイアモンド・ブラックファン貧血や孤発性先天性無脾症といった重度の発生異常が引き起こされる。リボソームタンパク質遺伝子のコピー数が半減した際にヒト発生異常が引き起こされる分子機構については、未だ不明な点が多い。興味深いことに、ショウジョウバエのリボソームタンパク質遺伝子ヘテロ変異体(Minute 変異体と総称される)は、発生遅延(幼虫期の延長)や成虫剛毛の縮小が見られるものの、概して野生型と同様の形態・機能を有する組織・器官が構築される。これらのことから、ショウジョウバエ Minute 変異体はリボソームタンパク質遺伝子のヘテロ変異によって生じ得る発生異常を何らかの仕組みにより抑え込むことで、頑健な個体発生を実現していると考えられる。そこで申請者は、Minute 変異体における組織発生を解析することで、頑健な組織形態形成を支える分子基盤の解明に迫った。

まず初めに、Minute 変異体が正常な形態形成を行うために必要な因子を遺伝学的に探索したところ、がん抑制経路 Hippo 経路の転写共役因子Yki をコードする遺伝子が 1 コピー欠損すると、Minute 変異体の翅に重度の形態形成異常が起こることを見いだした。このことは、Minute 変異体の正常な翅形成に Yki活性が重要であることを示している。さらなる遺伝学的解析により、リボソームタンパク質遺伝子 RpS3 と yki の二重ヘテロ変異体 (yki/+, RpS3/+) の翅に見られる形態形成異常は、幼虫期の翅原基における Eiger/TNF シグナルを介した c-Jun N-terminalkinase (JNK) 依存的細胞死の亢進に起因することを見いだした。また、この JNK シグナルの活性化に、ショウジョウバエ開始カスパーゼである Dronc が必要であることが明らかになった。さらに、yki 遺伝子のコピー数を半減させると、翅原基の posteriorコンパートメントにおいて Yki の標的遺伝子 DIAP1 の発現レベルが顕著に低下することがわかった。DIAP1 は Dronc を不活性化するタンパク質であることから、DIAP1の発現レベル低下によって Dronc 活性が上昇すると考えられた。さらなる解析により、Dronc と JNK は正のフィードバックループを形成し、これにより増幅されたDronc 活性が大量の細胞死を誘導することで翅の形態形成異常が引き起こされることが示された。以上のことから、Minute 変異体の翅原基では JNK シグナルおよびDronc の活性化を Yki の標的遺伝子である DIAP1 が抑え込むことで、正常な形態形成が実現されていると考えられた。

本研究により、Hippo 経路や Yki の活性が個体発生において頑健な組織形態形成を支える重要な因子として機能している可能性が示唆された。

この論文で使われている画像

参考文献

Agrawal, N., Delanoue, R., Mauri, A., Basco, D., Pasco, M., Thorens, B., and Léopold, P. (2016). The Drosophila TNF Eiger Is an Adipokine that Acts on Insulin-Producing Cells to Mediate Nutrient Response. Cell Metabolism 23, 675–684.

Akai, N., Ohsawa, S., Sando, Y., and Igaki, T. (2021). Epithelial cell-turnover ensures robust coordination of tissue growth in Drosophila ribosomal protein mutants. PLOS Genetics 17, e1009300.

Andersen, D.S., Colombani, J., Palmerini, V., Chakrabandhu, K., Boone, E., Röthlisberger, M., Toggweiler, J., Basler, K., Mapelli, M., Hueber, A.O., et al. (2015). The Drosophila TNF receptor Grindelwald couples loss of cell polarity and neoplastic growth. Nature 522, 482–486.

Aspesi, A., and Ellis, S.R. (2019). Rare ribosomopathies: insights into mechanisms of cancer. Nature Reviews Cancer 19, 228–238.

Beldade, P., Mateus, A.R.A., and Keller, R.A. (2011). Evolution and molecular mechanisms of adaptive developmental plasticity. Molecular Ecology 20, 1347–1363.

Bergmann, A. (2010). The role of ubiquitylation for the control of cell death in Drosophila. Cell Death and Differentiation 17, 61–67.

Berthelet, J., and Dubrez, L. (2013). Regulation of Apoptosis by Inhibitors of Apoptosis (IAPs). Cells 2, 163.

Bolze, A., Mahlaoui, N., Byun, M., Turner, B., Trede, N., Ellis, S.R., Abhyankar, A., Itan, Y., Patin, E., Brebner, S., et al. (2013). Ribosomal protein SA haploinsufficiency in humans with isolated congenital asplenia. Science 340, 976–978.

Brehme, K.S. (1939). A Study of the Effect on Development of ‘Minute’ Mutations in Drosophila Melanogaster. Genetics 24, 131–13161.

Cmejla, R., Cmejlova, J., Handrkova, H., Petrak, J., and Pospisilova, D. (2007). Ribosomal protein S17 gene (RPS17) is mutated in Diamond-Blackfan anemia. Human Mutation 28, 1178–1182.

Cordero, J.B., Macagno, J.P., Stefanatos, R.K., Strathdee, K.E., Cagan, R.L., and Vidal, M. (2010). Oncogenic ras diverts a host TNF tumor suppressor activity into tumor promoter. Developmental Cell 18, 999–1011.

Davis, J.R., and Tapon, N. (2019). Hippo signalling during development. Development 146, dev167106.

Ditzel, M., Broemer, M., Tenev, T., Bolduc, C., Lee, T. V., Rigbolt, K.T.G., Elliott, R., Zvelebil, M., Blagoev, B., Bergmann, A., et al. (2008). Inactivation of Effector Caspases through Nondegradative Polyubiquitylation. Molecular Cell 32, 540–553.

Doherty, L., Sheen, M.R., Vlachos, A., Choesmel, V., O’Donohue, M.F., Clinton, C., Schneider, H.E., Sieff, C.A., Newburger, P.E., Ball, S.E., et al. (2010). Ribosomal Protein Genes RPS10 and RPS26 Are Commonly Mutated in Diamond-Blackfan Anemia. American Journal of Human Genetics 86, 222–228.

Draptchinskaia, N., Gustavsson, P., Andersson, B., Pettersson, M., Willig, T.N., Dianzani, I., Ball, S., Tchernia, G., Klar, J., Matsson, H., et al. (1999). The gene encoding ribosomal protein S19 is mutated in Diamond-Blackfan anaemia. Nature Genetics 21, 169–175.

Ebert, B.L., Pretz, J., Bosco, J., Chang, C.Y., Tamayo, P., Galili, N., Raza, A., Root, D.E., Attar, E., Ellis, S.R., et al. (2008). Identification of RPS14 as a 5q - syndrome gene by RNA interference screen. Nature 451, 335–339.

Fan, Y., and Bergmann, A. (2010). The cleaved-Caspase-3 antibody is a marker of Caspase-9-like DRONC activity in Drosophila. Cell Death and Differentiation 17, 534– 539.

Glise, B., Bourbon, H., and Noselli, S. (1995). hemipterous encodes a novel drosophila MAP kinase kinase, required for epithelial cell sheet movement. Cell 83, 451–461.

Grewal, S.S., Li, L., Orian, A., Eisenman, R.N., and Edgar, B.A. (2005). Mycdependent regulation of ribosomal RNA synthesis during Drosophila development. Nature Cell Biology 7, 295–302.

Igaki, T. (2009). Correcting developmental errors by apoptosis: lessons from Drosophila JNK signaling. Apoptosis 14, 1021–1028.

Igaki, T., Kanda, H., Yamamoto-Goto, Y., Kanuka, H., Kuranaga, E., Aigaki, T., and Miura, M. (2002). Eiger, a TNF superfamily ligand that triggers the Drosophila JNK pathway. EMBO Journal 21, 3009–3018.

Igaki, T., Pastor-Pareja, J.C., Aonuma, H., Miura, M., and Xu, T. (2009). Intrinsic Tumor Suppression and Epithelial Maintenance by Endocytic Activation of Eiger/TNF Signaling in Drosophila. Developmental Cell 16, 458–465.

Imasheva, A.G., Bubli, O.A., Lazebny, O.E., and Zhivotovsky, L.A. (1995). Geographic differentiation in wing shape in Drosophila melanogaster. Genetica 96, 303–306.

Kanda, H., Igaki, T., Kanuka, H., Yagi, T., and Miura, M. (2002). Wengen, a member of the Drosophila tumor necrosis factor receptor superfamily, is required for Eiger signaling. The Journal of Biological Chemistry 277, 28372–28375.

Khajuria, R.K., Munschauer, M., Ulirsch, J.C., Fiorini, C., Ludwig, L.S., McFarland, S.K., Abdulhay, N.J., Specht, H., Keshishian, H., Mani, D.R., et al. (2018). Ribosome Levels Selectively Regulate Translation and Lineage Commitment in Human Hematopoiesis. Cell 173, 90–103.

Kondrashov, N., Pusic, A., Stumpf, C.R., Shimizu, K., Hsieh, A.C., Xue, S., Ishijima, J., Shiroishi, T., and Barna, M. (2011). Ribosome-mediated specificity in Hox mRNA translation and vertebrate tissue patterning. Cell 145, 383–397.

Kongsuwan, K., Yu, Q., Vincent, A., Frisardi, M.C., Rosbash, M., Lengyel, J.A., and Merriam, J. (1985). A Drosophila Minute gene encodes a ribosomal protein. Nature 317, 555–558.

Lee, T. V., Fan, Y., Wang, S., Srivastava, M., Broemer, M., Meier, P., and Bergmann, A. (2011). Drosophila IAP1-Mediated Ubiquitylation Controls Activation of the Initiator Caspase DRONC Independent of Protein Degradation. PLoS Genetics 7, e1002261.

Lodish, H.F. (1974). Model for the regulation of mRNA translation applied to haemoglobin synthesis. Nature 1974 251:5474 251, 385–388.

Ludwig, L.S., Gazda, H.T., Eng, J.C., Eichhorn, S.W., Thiru, P., Ghazvinian, R., George, T.I., Gotlib, J.R., Beggs, A.H., Sieff, C.A., et al. (2014). Altered translation of GATA1 in Diamond-Blackfan anemia. Nature Medicine 20, 748–753.

Ma, X., Xu, W., Zhang, D., Yang, Y., Li, W., and Xue, L. (2015). Wallenda regulates JNK-mediated cell death in Drosophila. Cell Death and Disease 6, e1737.

Martín-Blanco, E., Gampel, A., Ring, J., Virdee, K., Kirov, N., Tolkovsky, A.M., and Martinez-Arias, A. (1998). puckered encodes a phosphatase that mediates a feedback loop regulating JNK activity during dorsal closure in Drosophila. Genes and Development 12, 557–670.

Marygold, S.J., Roote, J., Reuter, G., Lambertsson, A., Ashburner, M., Millburn, G.H., Harrison, P.M., Yu, Z., Kenmochi, N., Kaufman, T.C., et al. (2007). The ribosomal protein genes and Minute loci of Drosophila melanogaster. Genome Biology 8, R216.

McGowan, K.A., Li, J.Z., Park, C.Y., Beaudry, V., Tabor, H.K., Sabnis, A.J., Zhang, W., Fuchs, H., De Angelis, M.H., Myers, R.M., et al. (2008). Ribosomal mutations cause p53-mediated dark skin and pleiotropic effects. Nature Genetics 40, 963–970.

Mihaly, J., Kockel, L., Gaengel, K., Weber, U., Bohmann, D., and Mlodzik, M. (2001). The role of the Drosophila TAK homologue dTAK during development. Mechanisms of Development 102, 67–79.

Mills, E.W., and Green, R. (2017). Ribosomopathies: There’s strength in numbers. Science 358.

Moya, I.M., and Halder, G. (2018). Hippo–YAP/TAZ signalling in organ regeneration and regenerative medicine. Nature Reviews Molecular Cell Biology 2018 20:4 20, 211– 226.

Oliver, E.R., Saunders, T.L., Tarlé, S.A., and Glaser, T. (2004). Ribosomal protein L24 defect in belly spot and tail (Bst), a mouse Minute. Development (Cambridge, England) 131, 3907–3920.

Palmerini, V., Monzani, S., Laurichesse, Q., Loudhaief, R., Mari, S., Cecatiello, V., Olieric, V., Pasqualato, S., Colombani, J., Andersen, D.S., et al. (2021). Drosophila TNFRs Grindelwald and Wengen bind Eiger with different affinities and promote distinct cellular functions. Nature Communications 12, 1–12.

Perkins, K.K., Admon, A., Patel, N., and Tjian, R. (1990). The Drosophila Fos-related AP-1 protein is a developmentally regulated transcription factor. Genes & Development 4, 822–834.

Polaski, S., Whitney, L., Barker, B.W., and Stronach, B. (2006). Genetic analysis of slipper/mixed lineage kinase reveals requirements in multiple Jun-N-terminal kinasedependent morphogenetic events during Drosophila development. Genetics 174, 719– 733.

Riesgo-Escovar, J.R., Jenni, M., Fritz, A., and Hafen, E. (1996). The Drosophila jun-Nterminal kinase is required for cell morphogenesis but not for DJun-dependent cell fate specification in the eye. Genes and Development 10, 2759–2768.

Ryabinina, O.P., Subbian, E., and Iordanov, M.S. (2006). D-MEKK1, the Drosophila orthologue of mammalian MEKK4/MTK1, and Hemipterous/D-MKK7 mediate the activation of D-JNK by cadmium and arsenite in Schneider cells. BMC Cell Biology 7, 1–10.

Ryoo, H.D., and Bergmann, A. (2012). The role of apoptosis-induced proliferation for regeneration and cancer. Cold Spring Harbor Perspectives in Biology 4. Santabárbara-Ruiz, P., Esteban-Collado, J., Pérez, L., Viola, G., Abril, J.F., Milán, M., Corominas, M., and Serras, F. (2019). Ask1 and Akt act synergistically to promote ROS-dependent regeneration in Drosophila. PLoS Genetics 15, e1007926.

Shlevkov, E., and Morata, G. (2012). A dp53/JNK-dependant feedback amplification loop is essential for the apoptotic response to stress in Drosophila. Cell Death and Differentiation 19, 451–460.

T. Hellwig, C., Passante, E., and Rehm, M. (2011). The molecular machinery regulating apoptosis signal transduction and its implication in human physiology and pathophysiologies. Current Molecular Medicine 11, 31–47.

Toggweiler, J., Willecke, M., and Basler, K. (2016). The transcription factor Ets21C drives tumor growth by cooperating with AP-1. Scientific Reports 6, 1–10.

Uhlirova, M., and Bohmann, D. (2006). JNK- and Fos-regulated Mmp1 expression cooperates with Ras to induce invasive tumors in Drosophila. The EMBO Journal 25, 5294–5304.

Vousden, K.H., and Lane, D.P. (2007). p53 in health and disease. Nature Reviews Molecular Cell Biology 8, 275–283.

Wang, R., Yoshida, K., Toki, T., Sawada, T., Uechi, T., Okuno, Y., Sato-Otsubo, A., Kudo, K., Kamimaki, I., Kanezaki, R., et al. (2015a). Loss of function mutations in RPL27 and RPS27 identified by whole-exome sequencing in Diamond-Blackfan anaemia. British Journal of Haematology 168, 854–864.

Wang, W., Nag, S., Zhang, X., Wang, M.H., Wang, H., Zhou, J., and Zhang, R. (2015b). Ribosomal proteins and human diseases: Pathogenesis, molecular mechanisms, and therapeutic implications. Medicinal Research Reviews 35, 225–285.

Wang, X.S., Diener, K., Jannuzzi, D., Trollinger, D., Tan, T.H., Lichenstein, H., Zukowski, M., and Yao, Z. (1996). Molecular cloning and characterization of a novel protein kinase with a catalytic domain homologous to mitogen-activated protein kinase kinase kinase. The Journal of Biological Chemistry 271, 31607–31611.

Watkins-Chow, D.E., Cooke, J., Pidsley, R., Edwards, A., Slotkin, R., Leeds, K.E., Mullen, R., Baxter, L.L., Campbell, T.G., Salzer, M.C., et al. (2013). Mutation of the Diamond-Blackfan Anemia Gene Rps7 in Mouse Results in Morphological and Neuroanatomical Phenotypes. PLoS Genetics 9, e1003094.

Willis, D.K., Wang, J., Lindholm, J.R., Orth, A., and Goodman, W.G. (2010). Microarray Analysis of Juvenile Hormone Response in Drosophila melanogaster S2 cells. Journal of Insect Science 10, 1–14.

Willsey, H.R., Zheng, X., Pastor-Pareja, J., Willsey, A.J., Beachy, P.A., and Xu, T. (2016). Localized JNK signaling regulates organ size during development. ELife 5, e11491.

Zhang, Y., and Lu, H. (2009). Signaling to p53: ribosomal proteins find their way. Cancer Cell 16, 369–377.

Ziosi, M., Baena-López, L.A., Grifoni, D., Froldi, F., Pession, A., Garoia, F., Trotta, V., Bellosta, P., Cavicchi, S., and Pession, A. (2010). dMyc Functions Downstream of Yorkie to Promote the Supercompetitive Behavior of Hippo Pathway Mutant Cells. PLoS Genetics 6, e1001140.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る